Tate’s thesis in the de Rham setting
HTML articles powered by AMS MathViewer
- by Justin Hilburn and Sam Raskin
- J. Amer. Math. Soc. 36 (2023), 917-1001
- DOI: https://doi.org/10.1090/jams/1010
- Published electronically: June 27, 2022
- HTML | PDF
Abstract:
We calculate the category of $D$-modules on the loop space of the affine line in coherent terms. Specifically, we find that this category is derived equivalent to the category of ind-coherent sheaves on the moduli space of rank one de Rham local systems with a flat section. Our result establishes a conjecture coming out of the $3d$ mirror symmetry program, which obtains new compatibilities for the geometric Langlands program from rich dualities of QFTs that are themselves obtained from string theory conjectures.References
- D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves and the geometric Langlands conjecture, Selecta Math. (N.S.) 21 (2015), no. 1, 1–199. MR 3300415, DOI 10.1007/s00029-014-0167-5
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353, DOI 10.1090/coll/051
- A. Beilinson, Langlands parameters for Heisenberg modules, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 51–60. MR 2214245, DOI 10.1007/0-8176-4478-4_{4}
- Dario Beraldo, Loop group actions on categories and Whittaker invariants, Adv. Math. 322 (2017), 565–636. MR 3720805, DOI 10.1016/j.aim.2017.10.024
- Alexander Braverman and Michael Finkelberg, Coulomb branches of 3-dimensional gauge theories and related structures, Geometric representation theory and gauge theory, Lecture Notes in Math., vol. 2248, Springer, Cham, [2019] ©2019, pp. 1–52. MR 4286060, DOI 10.1007/978-3-030-26856-5_{1}
- Alexander Braverman, Michael Finkelberg, Victor Ginzburg, and Roman Travkin, Mirabolic Satake equivalence and supergroups, Compos. Math. 157 (2021), no. 8, 1724–1765. MR 4292176, DOI 10.1112/S0010437X21007387
- Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal N=4$ gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), no. 5, 1071–1147. MR 3952347, DOI 10.4310/ATMP.2018.v22.n5.a1
- Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Coulomb branches of $3d$ $\mathcal N=4$ quiver gauge theories and slices in the affine Grassmannian, Adv. Theor. Math. Phys. 23 (2019), no. 1, 75–166. With two appendices by Braverman, Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Nakajima, Ben Webster and Alex Weekes. MR 4020310, DOI 10.4310/ATMP.2019.v23.n1.a3
- Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Ring objects in the equivariant derived Satake category arising from Coulomb branches, Adv. Theor. Math. Phys. 23 (2019), no. 2, 253–344. Appendix by Gus Lonergan. MR 4033353, DOI 10.4310/ATMP.2019.v23.n2.a1
- Alexander Braverman, Michael Finkelberg, and Roman Travkin, Orthosymplectic Satake equivalence, Preprint, arXiv:1912.01930, 2019.
- P. Berthelot, A. Grothendieck, L. Illusie, et al., Théorie des intersections et théoreme de Riemann–Roch, séminaire de géométrie algébrique du Bois-Marie 1966–1967 (SGA 6), Lect. Notes Math. 225 (1971).
- Bhargav Bhatt and Daniel Halpern-Leistner, Tannaka duality revisited, Adv. Math. 316 (2017), 576–612. MR 3672914, DOI 10.1016/j.aim.2016.08.040
- Tom Braden, Anthony Licata, Nicholas Proudfoot, and Ben Webster, Hypertoric category $\scr {O}$, Adv. Math. 231 (2012), no. 3-4, 1487–1545. MR 2964613, DOI 10.1016/j.aim.2012.06.019
- Tom Braden, Anthony Licata, Nicholas Proudfoot, and Ben Webster, Quantizations of conical symplectic resolutions II: category $O$ and symplectic duality, Astérisque 384 (2016), 75–179.
- Tom Braden, Nicholas Proudfoot, and Ben Webster, Quantizations of conical symplectic resolutions I: local and global structure, Astérisque 384 (2016), 1–73 (English, with English and French summaries). MR 3594664
- Dylan Butson, Equivariant localization in factorization homology and applications in mathematical physics I: foundations, Preprint, arXiv:2011.14988, 2020.
- David Ben-Zvi, Electric-magnetic duality between periods and $l$-functions, Talk at Western Hemisphere Colloquium on Geometry and Physics, 2021, https://www.youtube.com/watch?v=exf7wsHjPbU.
- David Ben-Zvi, Sam Gunningham, and David Nadler, The character field theory and homology of character varieties, Math. Res. Lett. 26 (2019), no. 5, 1313–1342. MR 4049811, DOI 10.4310/MRL.2019.v26.n5.a4
- David Ben-Zvi and David Nadler, Loop spaces and connections, J. Topol. 5 (2012), no. 2, 377–430. MR 2928082, DOI 10.1112/jtopol/jts007
- Carlos Contou-Carrère, Jacobienne locale d’une courbe formelle relative, Rend. Semin. Mat. Univ. Padova 130 (2013), 1–106 (French, with English summary). MR 3148632, DOI 10.4171/RSMUP/130-1
- Kevin Costello, Thomas Creutzig, and Davide Gaiotto, Higgs and Coulomb branches from vertex operator algebras, J. High Energy Phys. 3 (2019), 066, 48. MR 3951200, DOI 10.1007/jhep03(2019)066
- Kevin Costello, Tudor Dimofte, and Davide Gaiotto, Boundary chiral algebras and holomorphic twists, Preprint, arXiv:2005.00083, 2020.
- Kevin Costello and Owen Gwilliam, Factorization algebras in quantum field theory. Vol. 1, New Mathematical Monographs, vol. 31, Cambridge University Press, Cambridge, 2017. MR 3586504, DOI 10.1017/9781316678626
- Kevin Costello and Davide Gaiotto, Vertex Operator Algebras and 3d $\mathcal N=4$ gauge theories, J. High Energy Phys. 5 (2019), 018, 37. MR 3976868, DOI 10.1007/jhep05(2019)018
- Kevin Costello, Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4, Pure Appl. Math. Q. 9 (2013), no. 1, 73–165. MR 3126501, DOI 10.4310/PAMQ.2013.v9.n1.a3
- Kevin Costello, Factorization algebras associated to the $(2,0)$ theory, 2014, Series of four talks, all of which are available on YouTube. The first two are available at https://www.youtube.com/watch?v=cdlvhIMO-zQ, https://www.youtube.com/watch?v=euWxJmIQs8E.
- Kevin Costello and Claudia Scheimbauer, Lectures on mathematical aspects of (twisted) supersymmetric gauge theories, Mathematical aspects of quantum field theories, Math. Phys. Stud., Springer, Cham, 2015, pp. 57–87. MR 3330239
- Tudor Dimofte, Niklas Garner, Michael Geracie, and Justin Hilburn, Mirror symmetry and line operators, J. High Energy Phys. 2 (2020), 075, 147. MR 4089292, DOI 10.1007/jhep02(2020)075
- Tudor Dimofte, Categories of line operators in $3d$ $N = 4$ gauge theories, Talk at Perimeter Institute, 2018, https://pirsa.org/index.php/18100103.
- Chris Elliott and Pavel Safronov, Topological twists of supersymmetric algebras of observables, Comm. Math. Phys. 371 (2019), no. 2, 727–786. MR 4019918, DOI 10.1007/s00220-019-03393-9
- Chris Elliott, Pavel Safronov, and Brian R. Williams, A taxonomy of twists of supersymmetric Yang–Mills theory, Preprint, arXiv:2002.10517, 2020.
- Chris Elliott and Philsang Yoo, Geometric Langlands twists of $N=4$ gauge theory from derived algebraic geometry, Adv. Theor. Math. Phys. 22 (2018), no. 3, 615–708. MR 3870437, DOI 10.4310/ATMP.2018.v22.n3.a3
- Dennis Gaitsgory, Quantum Langlands correspondence, Preprint, arXiv:1601.05279, 2007.
- Dennis Gaitsgory, Stacks, 2012, http://www.math.harvard.edu/~gaitsgde/GL.
- Dennis Gaitsgory, Opers (day VI, talk 1), Unpublished conference notes, 2014, https://sites.google.com/site/geometriclanglands2014/notes.
- Davide Gaiotto, S-duality and boundary conditions and the geometric Langlands program, String-Math 2016, Proc. Sympos. Pure Math., vol. 98, Amer. Math. Soc., Providence, RI, 2018, pp. 139–179. MR 3821752, DOI 10.1090/pspum/098/01721
- Russell A. Goward Jr. and Karen E. Smith, The jet scheme of a monomial scheme, Comm. Algebra 34 (2006), no. 5, 1591–1598. MR 2229478, DOI 10.1080/00927870500454927
- Dennis Gaitsgory and Nick Rozenblyum, Crystals and D-modules, Pure Appl. Math. Q. 10 (2014), no. 1, 57–154. MR 3264953, DOI 10.4310/PAMQ.2014.v10.n1.a2
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry, American Mathematical Soc., 2017.
- Davide Gaiotto and Edward Witten, $S$-duality of boundary conditions in $\scr N=4$ super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009), no. 3, 721–896. MR 2610576, DOI 10.4310/ATMP.2009.v13.n3.a5
- Justin Hilburn, Symplectic duality and geometric Langlands duality, Talk at IHÉS, 2019, https://www.youtube.com/watch?v=ogDHRjegRXU.
- Amihay Hanany and Edward Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nuclear Phys. B 492 (1997), no. 1-2, 152–190. MR 1451054, DOI 10.1016/S0550-3213(97)00157-0
- K. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996), no. 3, 513–519. MR 1413696, DOI 10.1016/0370-2693(96)01088-X
- Anton Kapustin, Lev Rozansky, and Natalia Saulina, Three-dimensional topological field theory and symplectic algebraic geometry. I, Nuclear Phys. B 816 (2009), no. 3, 295–355. MR 2522724, DOI 10.1016/j.nuclphysb.2009.01.027
- Anton Kapustin, Kevin Setter, and Ketan Vyas, Surface operators in four-dimensional topological gauge theory and Langlands duality, Preprint, arXiv:1002.0385, 2010.
- Anton Kapustin and Edward Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), no. 1, 1–236. MR 2306566, DOI 10.4310/CNTP.2007.v1.n1.a1
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- Jacob Lurie, Higher algebra, 2012, http://math.harvard.edu/~lurie/papers/HigherAlgebra.pdf.
- Jacob Lurie, Spectral algebraic geometry, Preprint, www.math.harvard.edu/~lurie/papers/SAG-rootfile. pdf, 2016.
- Hiraku Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal N=4$ gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), no. 3, 595–669. MR 3565863, DOI 10.4310/ATMP.2016.v20.n3.a4
- Sam Raskin, Factorization II (day III, talk 1), Unpublished conference ntoes, 2014 https://sites.google.com/site/geometriclanglands2014/notes.
- Sam Raskin, Chiral categories, 2015, https://web.ma.utexas.edu/users/sraskin/chiralcats.pdf.
- Sam Raskin, $D$-modules on infinite dimensional varieties, 2015, https://web.ma.utexas.edu/users/sraskin/dmod.pdf.
- Sam Raskin, On the notion of spectral decomposition in local geometric Langlands, 2015, math.utexas.edu/~sraskin/locsys.pdf.
- Sam Raskin, Chiral principal series categories II: the factorizable Whittaker category, Available at https://web.ma.utexas.edu/users/sraskin/cpsii.pdf, 2016.
- Samuel David Raskin, $W$-algebras and Whittaker categories, 2016, https://web.ma.utexas.edu/users/sraskin/whit.pdf.
- Sam Raskin, Duality for Heisenberg algebras and groups, 2018, https://lysenko.perso.math.cnrs.fr/Notes_talks_winter2018/GL-7(Raskin).pdf.
- Sam Raskin, Homological methods in semi-infinite contexts, 2019, https://web.ma.utexas.edu/users/sraskin/topalg.pdf.
- L. Rozansky and E. Witten, Hyper-Kähler geometry and invariants of three-manifolds, Selecta Math. (N.S.) 3 (1997), no. 3, 401–458. MR 1481135, DOI 10.1007/s000290050016
- Yiannis Sakellaridis and Akshay Venkatesh, Periods and harmonic analysis on spherical varieties, Astérisque 396 (2017), viii+360 (English, with English and French summaries). MR 3764130
- J. T. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Thompson, Washington, D.C., 1967, pp. 305–347. MR 0217026
- Constantin Teleman, Gauge theory and mirror symmetry, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1309–1332. MR 3728663
- Jonathan Wang, Examples of relative duality, https://www.jonathanpwang.com/notes/RelativeDualitydb.html.
- André Weil, Fonction zêta et distributions, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 312, 523–531 (French). MR 1610983
- Philsang Yoo, Symplectic duality and geometric Langlands duality, Talk at IHÉS, 2019, https://www.youtube.com/watch?v=IoK6vtB3XJA.
- Cornelia Yuen, Multiplicity of jet schemes of monomial schemes, Preprint, arXiv:math/0607638, 2006.
Bibliographic Information
- Justin Hilburn
- Affiliation: Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada
- MR Author ID: 1186907
- ORCID: 0000-0002-4961-8886
- Email: jhilburn@perimeterinstitute.ca
- Sam Raskin
- Affiliation: Department of Mathematics, The University of Texas at Austin, PMA 8.100, 2515 Speedway Stop C1200, Austin, Texas 78712
- MR Author ID: 994174
- Email: sraskin@math.utexas.edu
- Received by editor(s): September 7, 2021
- Received by editor(s) in revised form: April 11, 2022, and May 12, 2022
- Published electronically: June 27, 2022
- Additional Notes: The first author was part of the Simons Collaboration on Homological Mirror Symmetry supported by Simons Grant 390287. The seconda author was supported by NSF grant DMS-2101984. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute was supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.
- © Copyright 2022 by the authors
- Journal: J. Amer. Math. Soc. 36 (2023), 917-1001
- MSC (2020): Primary 22E57, 22E67; Secondary 11G45
- DOI: https://doi.org/10.1090/jams/1010
- MathSciNet review: 4583777