Non-compact Einstein manifolds with symmetry
HTML articles powered by AMS MathViewer
- by Christoph Böhm and Ramiro A. Lafuente;
- J. Amer. Math. Soc. 36 (2023), 591-651
- DOI: https://doi.org/10.1090/jams/1022
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group $\mathsf {G}$ with compact, smooth orbit space, we show that the nilradical $\mathsf {N}$ of $\mathsf {G}$ acts polarly and that the $\mathsf {N}$-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space.References
- D. V. Alekseevsky and V. Cortés, Isometry groups of homogeneous quaternionic Kähler manifolds, J. Geom. Anal. 9 (1999), no. 4, 513–545. MR 1757577, DOI 10.1007/BF02921971
- Michael Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York-Berlin, 1970, pp. 18–28. MR 278334
- D. V. Alekseevskiĭ and B. N. Kimel′fel′d, Structure of homogeneous Riemannian spaces with zero Ricci curvature, Funkcional. Anal. i Priložen. 9 (1975), no. 2, 5–11 (Russian). MR 402650
- Romina M. Arroyo and Ramiro Lafuente, Homogeneous Ricci solitons in low dimensions, Int. Math. Res. Not. IMRN 13 (2015), 4901–4932. MR 3439095, DOI 10.1093/imrn/rnu088
- Romina M. Arroyo and Ramiro A. Lafuente, The Alekseevskii conjecture in low dimensions, Math. Ann. 367 (2017), no. 1-2, 283–309. MR 3606442, DOI 10.1007/s00208-016-1386-1
- D. V. Alekseevskiĭ, Compact quaternion spaces, Funkcional. Anal. i Priložen. 2 (1968), no. 2, 11–20 (Russian). MR 231314
- D. V. Alekseevskiĭ, Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.) 96(138) (1975), 93–117, 168 (Russian). MR 362145
- D. V. Alekseevskiĭ, Classification of quaternionic spaces with transitive solvable group of motions, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 315–362, 472 (Russian). MR 402649
- D. Alekseevsky and Y. Nikolayevsky, Einstein extensions of Riemannian manifolds, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6059–6083. MR 4302155, DOI 10.1090/tran/8259
- Michael T. Anderson, Dehn filling and Einstein metrics in higher dimensions, J. Differential Geom. 73 (2006), no. 2, 219–261. MR 2225518
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
- Richard H. Bamler, Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 887–909. MR 2911887, DOI 10.4171/JEMS/321
- Lionel Bérard-Bergery, Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 543–576 (French). MR 533067, DOI 10.24033/asens.1356
- Lionel Bérard-Bergery, Sur de nouvelles variétés riemanniennes d’Einstein, Institut Élie Cartan, 6, Inst. Élie Cartan, vol. 6, Univ. Nancy, Nancy, 1982, pp. 1–60 (French). MR 727843
- Maria Buzano, Andrew S. Dancer, Michael Gallaugher, and McKenzie Wang, Non-Kähler expanding Ricci solitons, Einstein metrics, and exotic cone structures, Pacific J. Math. 273 (2015), no. 2, 369–394. MR 3317771, DOI 10.2140/pjm.2015.273.369
- M. Buzano, A. S. Dancer, and M. Wang, A family of steady Ricci solitons and Ricci flat metrics, Comm. Anal. Geom. 23 (2015), no. 3, 611–638. MR 3310526, DOI 10.4310/CAG.2015.v23.n3.a5
- Rohin Berichon, The Alekseevskii conjecture in 9 and 10 dimensions, Differential Geom. Appl. 78 (2021), Paper No. 101782, 20. MR 4280205, DOI 10.1016/j.difgeo.2021.101782
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- William Browder and Wu Chung Hsiang, $G$-actions and the fundamental group, Invent. Math. 65 (1981/82), no. 3, 411–424. MR 643560, DOI 10.1007/BF01396626
- Christoph Böhm and Ramiro A. Lafuente, Immortal homogeneous Ricci flows, Invent. Math. 212 (2018), no. 2, 461–529. MR 3787832, DOI 10.1007/s00222-017-0771-z
- Owen Dearricott, Wilderich Tuschmann, Yuri Nikolayevsky, Thomas Leistner, and Diarmuid Crowley (eds.), Differential geometry in the large, London Mathematical Society Lecture Note Series, vol. 463, Cambridge University Press, Cambridge, 2021. Papers related to the Australian-German Workshop held at the University of Melbourne, Creswick, February 4–15, 2019. MR 4420783, DOI 10.1017/9781108884136
- Christoph Böhm and Ramiro A. Lafuente, Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, Geom. Topol. 26 (2022), no. 2, 899–936. MR 4444271, DOI 10.2140/gt.2022.26.899
- H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1, 47–92. MR 1258192, DOI 10.1002/cpa.3160470105
- Christoph Böhm, Non-compact cohomogeneity one Einstein manifolds, Bull. Soc. Math. France 127 (1999), no. 1, 135–177 (English, with English and French summaries). MR 1700472, DOI 10.24033/bsmf.2345
- Armand Borel, On period maps of certain k(pi,1), Borel collected papers III, Springer-Verlag, Heidelberg, 2014, pp. 57–60.
- N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1285, Hermann, Paris, 1971 (French). Seconde édition. MR 271276
- Felix E. Browder, Families of linear operators depending upon a parameter, Amer. J. Math. 87 (1965), 752–758. MR 185450, DOI 10.2307/2373072
- E. Calabi, A construction of nonhomogeneous Einstein metrics, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Amer. Math. Soc., Providence, RI, 1975, pp. 17–24. MR 379912
- E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269–294 (French). MR 543218, DOI 10.24033/asens.1367
- V. Cortés, M. Dyckmanns, M. Jüngling, and D. Lindemann, A class of cubic hypersurfaces and quaternionic Kähler manifolds of co-homogeneity one, Asian J. Math. 25 (2021), no. 1, 1–30. MR 4323301, DOI 10.4310/AJM.2021.v25.n1.a1
- Brian Clarke, The Riemannian $L^2$ topology on the manifold of Riemannian metrics, Ann. Global Anal. Geom. 39 (2011), no. 2, 131–163. MR 2748342, DOI 10.1007/s10455-010-9227-z
- Vicente Cortés, Alekseevskian spaces, Differential Geom. Appl. 6 (1996), no. 2, 129–168. MR 1395026, DOI 10.1016/0926-2245(96)89146-7
- David M. J. Calderbank and Henrik Pedersen, Selfdual Einstein metrics with torus symmetry, J. Differential Geom. 60 (2002), no. 3, 485–521. MR 1950174
- M. L. Leite and I. Dotti de Miatello, Metrics of negative Ricci curvature on $\textrm {SL}(n,\,\textbf {R}),$ $n\geq 3$, J. Differential Geometry 17 (1982), no. 4, 635–641 (1983). MR 683168
- I. Dotti Miatello, M. L. Leite, and R. J. Miatello, Negative Ricci curvature on complex simple Lie groups, Geom. Dedicata 17 (1984), no. 2, 207–218. MR 771198, DOI 10.1007/BF00151509
- Isabel Dotti Miatello, Transitive group actions and Ricci curvature properties, Michigan Math. J. 35 (1988), no. 3, 427–434. MR 978312, DOI 10.1307/mmj/1029003823
- Josef Dorfmeister and Kazufumi Nakajima, The fundamental conjecture for homogeneous Kähler manifolds, Acta Math. 161 (1988), no. 1-2, 23–70. MR 962095, DOI 10.1007/BF02392294
- Andrew Dancer and McKenzie Y. Wang, Kähler-Einstein metrics of cohomogeneity one, Math. Ann. 312 (1998), no. 3, 503–526. MR 1654828, DOI 10.1007/s002080050233
- Anand Dessai and Michael Wiemeler, Complete intersections with $S^1$-action, Transform. Groups 22 (2017), no. 2, 295–320. MR 3649456, DOI 10.1007/s00031-017-9418-9
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- J.-H. Eschenburg and McKenzie Y. Wang, The initial value problem for cohomogeneity one Einstein metrics, J. Geom. Anal. 10 (2000), no. 1, 109–137. MR 1758585, DOI 10.1007/BF02921808
- Edison Alberto Fernández-Culma, Classification of nilsoliton metrics in dimension seven, J. Geom. Phys. 86 (2014), 164–179. MR 3282320, DOI 10.1016/j.geomphys.2014.07.032
- Joel Fine and Bruno Premoselli, Examples of compact Einstein four-manifolds with negative curvature, J. Amer. Math. Soc. 33 (2020), no. 4, 991–1038. MR 4155218, DOI 10.1090/jams/944
- Carolyn S. Gordon and Michael R. Jablonski, Einstein solvmanifolds have maximal symmetry, J. Differential Geom. 111 (2019), no. 1, 1–38. MR 3909903, DOI 10.4310/jdg/1547607686
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Carolyn S. Gordon and Edward N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269. MR 936815, DOI 10.1090/S0002-9947-1988-0936815-X
- Karsten Grove and Wolfgang Ziller, Polar manifolds and actions, J. Fixed Point Theory Appl. 11 (2012), no. 2, 279–313. MR 3000673, DOI 10.1007/s11784-012-0087-y
- Jens Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352. MR 1632782, DOI 10.1007/s002220050247
- Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34. MR 353210, DOI 10.1007/BF01344139
- Ernst Heintze, Xiaobo Liu, and Carlos Olmos, Isoparametric submanifolds and a Chevalley-type restriction theorem, Integrable systems, geometry, and topology, AMS/IP Stud. Adv. Math., vol. 36, Amer. Math. Soc., Providence, RI, 2006, pp. 151–190. MR 2222515, DOI 10.1090/amsip/036/04
- Chenxu He, Peter Petersen, and William Wylie, Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons, J. Reine Angew. Math. 707 (2015), 217–245. MR 3403459, DOI 10.1515/crelle-2013-0078
- Peter Heinzner, Gerald W. Schwarz, and Henrik Stötzel, Stratifications with respect to actions of real reductive groups, Compos. Math. 144 (2008), no. 1, 163–185. MR 2388560, DOI 10.1112/S0010437X07003259
- Michael Jablonski, Homogeneous Ricci solitons, J. Reine Angew. Math. 699 (2015), 159–182. MR 3305924, DOI 10.1515/crelle-2013-0044
- Michael Jablonski, Strongly solvable spaces, Duke Math. J. 164 (2015), no. 2, 361–402. MR 3306558, DOI 10.1215/00127094-2861277
- Gary R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309–349. MR 261487
- Gary R. Jensen, The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/71), 1125–1144. MR 289726, DOI 10.1512/iumj.1971.20.20104
- Michael Jablonski and Peter Petersen, A step towards the Alekseevskii conjecture, Math. Ann. 368 (2017), no. 1-2, 197–212. MR 3651571, DOI 10.1007/s00208-016-1429-7
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1969 original; A Wiley-Interscience Publication. MR 1393941
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- Jorge Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001), no. 4, 715–733. MR 1825405, DOI 10.1007/PL00004456
- Jorge Lauret, Finding Einstein solvmanifolds by a variational method, Math. Z. 241 (2002), no. 1, 83–99. MR 1930986, DOI 10.1007/s002090100407
- Jorge Lauret, A canonical compatible metric for geometric structures on nilmanifolds, Ann. Global Anal. Geom. 30 (2006), no. 2, 107–138. MR 2234091, DOI 10.1007/s10455-006-9015-y
- Jorge Lauret, Einstein solvmanifolds and nilsolitons, New developments in Lie theory and geometry, Contemp. Math., vol. 491, Amer. Math. Soc., Providence, RI, 2009, pp. 1–35. MR 2537049, DOI 10.1090/conm/491/09607
- Jorge Lauret, Einstein solvmanifolds are standard, Ann. of Math. (2) 172 (2010), no. 3, 1859–1877. MR 2726101, DOI 10.4007/annals.2010.172.1859
- Jorge Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011), 1–21. MR 2770554, DOI 10.1515/CRELLE.2011.001
- Ramiro Lafuente and Jorge Lauret, Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differential Geom. 98 (2014), no. 2, 315–347. MR 3263520
- Joachim Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655–683. MR 1307899, DOI 10.2307/2118620
- John Lott, The collapsing geometry of almost Ricci-flat 4-manifolds, Comment. Math. Helv. 95 (2020), no. 1, 79–98. MR 4082894, DOI 10.4171/cmh/481
- Claude LeBrun and Simon Salamon, Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math. 118 (1994), no. 1, 109–132. MR 1288469, DOI 10.1007/BF01231528
- Emilio A. Lauret and Cynthia E. Will, Non-solvable Lie groups with negative Ricci curvature, Transform. Groups 27 (2022), no. 1, 163–179. MR 4400719, DOI 10.1007/s00031-020-09582-4
- Linda Ness, A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984), no. 6, 1281–1329. With an appendix by David Mumford. MR 765581, DOI 10.2307/2374395
- Lei Ni, A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators, Amer. Math. Monthly 121 (2014), no. 10, 903–908. MR 3295663, DOI 10.4169/amer.math.monthly.121.10.903
- Yu. G. Nikonorov, On the Ricci curvature of homogeneous metrics on noncompact homogeneous spaces, Sibirsk. Mat. Zh. 41 (2000), no. 2, 421–429, iv (Russian, with Russian summary); English transl., Siberian Math. J. 41 (2000), no. 2, 349–356. MR 1762193, DOI 10.1007/BF02674604
- Yu. G. Nikonorov, Noncompact homogeneous Einstein 5-manifolds, Geom. Dedicata 113 (2005), 107–143. MR 2171301, DOI 10.1007/s10711-005-0819-x
- Y. Nikolayevsky, Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc. 363 (2011), no. 8, 3935–3958. MR 2792974, DOI 10.1090/S0002-9947-2011-05045-2
- Aaron Naber and Gang Tian, Geometric structures of collapsing Riemannian manifolds II, J. Reine Angew. Math. 744 (2018), 103–132. MR 3871441, DOI 10.1515/crelle-2015-0082
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. MR 126506, DOI 10.2307/1970335
- Peter Petersen, Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016. MR 3469435, DOI 10.1007/978-3-319-26654-1
- Volker Puppe, Simply connected $6$-dimensional manifolds with little symmetry and algebras with small tangent space, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 283–302. MR 1368664
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Xiaochun Rong, A Bochner theorem and applications, Duke Math. J. 91 (1998), no. 2, 381–392. MR 1600598, DOI 10.1215/S0012-7094-98-09116-5
- Michael E. Taylor, Partial differential equations I. Basic theory, 2nd ed., Applied Mathematical Sciences, vol. 115, Springer, New York, 2011. MR 2744150, DOI 10.1007/978-1-4419-7055-8
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
- Cynthia Will, Rank-one Einstein solvmanifolds of dimension 7, Differential Geom. Appl. 19 (2003), no. 3, 307–318. MR 2013098, DOI 10.1016/S0926-2245(03)00037-8
- Cynthia E. Will, Negative Ricci curvature on some non-solvable Lie groups, Geom. Dedicata 186 (2017), 181–195. MR 3602891, DOI 10.1007/s10711-016-0185-x
- Cynthia Will, Negative Ricci curvature on some non-solvable Lie groups II, Math. Z. 294 (2020), no. 3-4, 1085–1105. MR 4074035, DOI 10.1007/s00209-019-02310-z
- Matthias Wink, Complete Ricci solitons via estimates on the soliton potential, Int. Math. Res. Not. IMRN 6 (2021), 4487–4521. MR 4230403, DOI 10.1093/imrn/rnaa147
- Joseph A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047. MR 185554
- Jun Wang and McKenzie Y. Wang, Einstein metrics on $S^2$-bundles, Math. Ann. 310 (1998), no. 3, 497–526. MR 1612258, DOI 10.1007/s002080050158
- Shing Tung Yau, Remarks on the group of isometries of a Riemannian manifold, Topology 16 (1977), no. 3, 239–247. MR 448379, DOI 10.1016/0040-9383(77)90004-0
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Bibliographic Information
- Christoph Böhm
- Affiliation: University of Münster, Einsteinstraße 62, 48149 Münster, Germany
- Email: cboehm@math.uni-muenster.de
- Ramiro A. Lafuente
- Affiliation: School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia
- MR Author ID: 1011421
- ORCID: 0000-0003-1719-1766
- Email: r.lafuente@uq.edu.au
- Received by editor(s): December 13, 2021
- Published electronically: February 28, 2023
- Additional Notes: The first-named author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 -390685587, Mathematics Münster: Dynamics-Geometry-Structure, and the Collaborative Research Centre CRC 1442, Geometry: Deformations and Rigidity. The second-named author is an Australian Research Council DECRA fellow (project ID DE190101063).
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 591-651
- MSC (2020): Primary 53C25, 53C21, 53C30; Secondary 14L24
- DOI: https://doi.org/10.1090/jams/1022
- MathSciNet review: 4583772