On the Goncharov depth conjecture and a formula for volumes of orthoschemes
HTML articles powered by AMS MathViewer
- by Daniil Rudenko;
- J. Amer. Math. Soc. 36 (2023), 1003-1060
- DOI: https://doi.org/10.1090/jams/1011
- Published electronically: September 8, 2022
- HTML | PDF | Request permission
Abstract:
We prove a conjecture of Goncharov, which says that any multiple polylogarithm can be expressed via polylogarithms of depth at most half of the weight. We give an explicit formula for this presentation, involving a summation over trees that correspond to decompositions of a polygon into quadrangles.
Our second result is a formula for volume of hyperbolic orthoschemes, generalizing the formula of Lobachevsky in dimension three to an arbitrary dimension. We show a surprising relation between the two results, which comes from the fact that hyperbolic orthoschemes are parametrized by configurations of points on $\mathbb {P}^1$. In particular, we derive both formulas from their common generalization.
References
- Kazuhiko Aomoto, Analytic structure of Schläfli function, Nagoya Math. J. 68 (1977), 1–16. MR 569685, DOI 10.1017/S0027763000017839
- Francis C. S. Brown and Claude Duhr. A double integral of dlog forms which is not polylogarithmic. arXiv:2006.09413, 2020.
- André Bloch and Gustave Guillaumin, Sur le volume des polyèdres non euclidiens, C. R. Acad. Sci. Paris 224 (1947), 1690–1692 (French). MR 20781
- A. A. Beĭlinson, A. N. Varchenko, A. B. Goncharov, and V. V. Shekhtman, Projective geometry and $K$-theory, Algebra i Analiz 2 (1990), no. 3, 78–130 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 3, 523–576. MR 1073210
- Johannes Böhm and Eike Hertel, Polyedergeometrie in $n$-dimensionalen Räumen konstanter Krümmung, Mathematische Monographien [Mathematical Monographs], vol. 14, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 (German). MR 626822
- A. Beĭlinson, R. MacPherson, and V. Schechtman, Notes on motivic cohomology, Duke Math. J. 54 (1987), no. 2, 679–710. MR 899412, DOI 10.1215/S0012-7094-87-05430-5
- Johannes Böhm, Inhaltsmessung im $R_{5}$ konstanter Krümmung, Arch. Math. (Basel) 11 (1960), 298–309 (German). MR 121714, DOI 10.1007/BF01236949
- Johannes Böhm, Zu Coxeters Integrationsmethode in gekrümmten Räumen, Math. Nachr. 27 (1963/64), 179–214 (German). MR 173976, DOI 10.1002/mana.19640270305
- Francis Brown, Notes on motivic periods, Commun. Number Theory Phys. 11 (2017), no. 3, 557–655. MR 3713352, DOI 10.4310/CNTP.2017.v11.n3.a2
- Steven Charlton, Herbert Gangl, and Danylo Radchenko, Explicit formulas for Grassmannian polylogarithms, arXiv:1909.13869, 2019.
- Steven Charlton, Herbert Gangl, and Danylo Radchenko, On functional equations for Nielsen polylogarithms, Commun. Number Theory Phys. 15 (2021), no. 2, 363–454. MR 4278927, DOI 10.4310/CNTP.2021.v15.n2.a4
- Steven Charlton, A review of Dan’s reduction method for multiple polylogarithms, arXiv:1703.03961, 2017.
- Steven Charlton, On motivic multiple $t$ values, Saha’s basis conjecture, and generators of alternating MZV’s, arXiv:2112.14613, 2021.
- A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Quantum field theory: perspective and prospective (Les Houches, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 530, Kluwer Acad. Publ., Dordrecht, 1999, pp. 59–108. MR 1725011
- H. S. M. Coxeter, The functions of Schläfli and Lobatschefsky. Q. J. Math. os-6 (1935), no. 1, 13–29.
- H. S. M. Coxeter, On Schläfli’s generalization of Napier’s pentagramma mirificum, Bull. Calcutta Math. Soc. 28 (1936), 123–144.
- Pierre Deligne, Théorie de Hodge. I, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 425–430 (French). MR 441965
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552, DOI 10.1007/BF02685881
- Pierre Deligne and Alexander B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 1–56 (French, with English and French summaries). MR 2136480, DOI 10.1016/j.ansens.2004.11.001
- Herbert Gangl, Multiple polylogarithms in weight 4, arXiv:1609.05557, 2016.
- C. F. Gauss, Pentagramma mirificum, Werke, Band III: Analysis, volume BD. III, Königliche Gesellschaft der Wissenschaften., Göttingen, 1866, pp. 481–490.
- A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), no. 2, 197–318. MR 1348706, DOI 10.1006/aima.1995.1045
- Alexander B. Goncharov, Polylogarithms in arithmetic and geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 374–387. MR 1403938
- Alexander Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999), no. 2, 569–618. MR 1649192, DOI 10.1090/S0894-0347-99-00293-3
- Alexander Goncharov. Multiple polylogarithms and mixed Tate motives. arXiv:math/0103059, 2001.
- Alexander Goncharov. Periods and mixed motives. arXiv:math/0202154, 2002.
- A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005), no. 2, 209–284. MR 2140264, DOI 10.1215/S0012-7094-04-12822-2
- Alexander B. Goncharov, Hodge correlators, J. Reine Angew. Math. 748 (2019), 1–138. MR 3918430, DOI 10.1515/crelle-2016-0013
- Alexander Goncharov and Daniil Rudenko, Motivic correlators, cluster varieties and Zagier’s conjecture on $\zeta _\mathrm {F}(4)$, arXiv:1803.08585, 2018.
- Alexander Goncharov and Guangyu Zhu, The Galois group of the category of mixed Hodge-Tate structures, Selecta Math. (N.S.) 24 (2018), no. 1, 303–358. MR 3769732, DOI 10.1007/s00029-018-0393-3
- Hugo Hadwiger, Ungelöste Probleme, Elem. Math. 11 (1956), 109–110.
- Richard M. Hain, The geometry of the mixed Hodge structure on the fundamental group, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 247–282. MR 927984, DOI 10.1090/pspum/046.2/927984
- Michael E. Hoffman and Kentaro Ihara, Quasi-shuffle products revisited, J. Algebra 481 (2017), 293–326. MR 3639477, DOI 10.1016/j.jalgebra.2017.03.005
- Michael E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), no. 1, 49–68. MR 1747062, DOI 10.1023/A:1008791603281
- Ruth Kellerhals, On the volumes of hyperbolic $5$-orthoschemes and the trilogarithm, Comment. Math. Helv. 67 (1992), no. 4, 648–663. MR 1185813, DOI 10.1007/BF02566523
- R. Kellerhals, Volumes in hyperbolic $5$-space, Geom. Funct. Anal. 5 (1995), no. 4, 640–667. MR 1345017, DOI 10.1007/BF01902056
- Kevin Kordek and Dan Margalit. Representation stability in the level 4 braid group. arXiv:1903.03119, 03 2019.
- Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR 1852188
- Nikolai I. Lobachevsky, Application of imaginary geometry to certain integrals, Uch. Zap. Kazan. Imperatorskogo Univ. I (1836), 3–166.
- Gérard Lion and Michèle Vergne, The Weil representation, Maslov index and theta series, Progress in Mathematics, vol. 6, Birkhäuser, Boston, MA, 1980. MR 573448, DOI 10.1016/0012-365x(79)90168-7
- Nikolay Malkin, Shuffle relations for Hodge and motivic correlators, arXiv:2003.06521, 2020.
- Richard K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), no. 1, 29–51. MR 498612, DOI 10.1016/0021-8693(77)90208-3
- Paul F. Müller, Über Simplexinhalte in nichteuklidischen Räumen, Ph.D Thesis, Universität Bonn, 1954.
- Teruji Thomas, The Maslov index as a quadratic space, Math. Res. Lett. 13 (2006), no. 5-6, 985–999. MR 2280792, DOI 10.4310/MRL.2006.v13.n6.a13
- G. Wechsung, Functional equations of hyperlogarithms, Structural properties of polylogarithms, Math. Surveys Monogr., vol. 37, Amer. Math. Soc., Providence, RI, 1991, pp. 171–184. MR 1148379, DOI 10.1090/surv/037/08
Bibliographic Information
- Daniil Rudenko
- Affiliation: Department of Mathematics, The University of Chicago, Illinois 60637
- MR Author ID: 1011469
- Email: rudenkodaniil@uchicago.edu
- Received by editor(s): February 3, 2021
- Received by editor(s) in revised form: December 11, 2021, February 19, 2022, and May 14, 2022
- Published electronically: September 8, 2022
- © Copyright 2022 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 1003-1060
- MSC (2020): Primary 11G55
- DOI: https://doi.org/10.1090/jams/1011
- MathSciNet review: 4618954
Dedicated: To Alexander Goncharov for his 60th birthday