Sharp isoperimetric inequalities for affine quermassintegrals
HTML articles powered by AMS MathViewer
- by Emanuel Milman and Amir Yehudayoff;
- J. Amer. Math. Soc. 36 (2023), 1061-1101
- DOI: https://doi.org/10.1090/jams/1013
- Published electronically: December 12, 2022
- HTML | PDF
Abstract:
The affine quermassintegrals associated to a convex body in $\mathbb {R}^n$ are affine-invariant analogues of the classical intrinsic volumes from the Brunn–Minkowski theory, and thus constitute a central pillar of Affine Convex Geometry. They were introduced in the 1980’s by E. Lutwak, who conjectured that among all convex bodies of a given volume, the $k$-th affine quermassintegral is minimized precisely on the family of ellipsoids. The known cases $k=1$ and $k=n-1$ correspond to the classical Blaschke–Santaló and Petty projection inequalities, respectively. In this work we confirm Lutwak’s conjecture, including characterization of the equality cases, for all values of $k=1,\ldots ,n-1$, in a single unified framework. In fact, it turns out that ellipsoids are the only local minimizers with respect to the Hausdorff topology.
For the proof, we introduce a number of new ingredients, including a novel construction of the Projection Rolodex of a convex body. In particular, from this new view point, Petty’s inequality is interpreted as an integrated form of a generalized Blaschke–Santaló inequality for a new family of polar bodies encoded by the Projection Rolodex. We extend these results to more general $L^p$-moment quermassintegrals, and interpret the case $p=0$ as a sharp averaged Loomis–Whitney isoperimetric inequality.
References
- P. W. Aitchison, C. M. Petty, and C. A. Rogers, A convex body with a false centre is an ellipsoid, Mathematika 18 (1971), 50–59. MR 293495, DOI 10.1112/S0025579300008366
- A. D. Alexandrov, Zur Theorie gemischter Volumina konvexer Körper; II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sb. SSSR 2 (1937), 1205–1238.
- A. D. Alexandrov, Zur Theorie gemischter Volumina konvexer Körper; IV. Gemischte Diskriminanten und gemischte Volumina, Mat. Sb. SSSR 3 (1938), 227–251.
- Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 2015. MR 3331351, DOI 10.1090/surv/202
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- Keith Ball, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), no. 2, 891–901. MR 1035998, DOI 10.1090/S0002-9947-1991-1035998-3
- J. Bertrand, Démonstration d’un théoreme de géométrie, J. Math. Pures Appl. 7 (1842), 215–216.
- W. Blaschke, Vorlesungen über differentialgeometrie, vol. II, Berlin-Heidelberg-New York, 1923.
- Béla Bollobás and Andrew Thomason, Projections of bodies and hereditary properties of hypergraphs, Bull. London Math. Soc. 27 (1995), no. 5, 417–424. MR 1338683, DOI 10.1112/blms/27.5.417
- T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR 920366
- J. Bourgain, J. Lindenstrauss, and V. Milman, Estimates related to Steiner symmetrizations, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 264–273. MR 1008728, DOI 10.1007/BFb0090060
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319–340. MR 880954, DOI 10.1007/BF01388911
- H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237. MR 346109, DOI 10.1016/0022-1236(74)90013-5
- H. Brunn, Über Kurven ohne Wendepunkte, Habilitationsschrift, Ackermann, München, 1889.
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- G. R. Burton and P. Mani, A characterisation of the ellipsoid in terms of concurrent sections, Comment. Math. Helv. 53 (1978), no. 4, 485–507. MR 511842, DOI 10.1007/BF02566093
- H. Busemann and E. G. Straus, Area and normality, Pacific J. Math. 10 (1960), 35–72. MR 121767
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Stefano Campi and Paolo Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393–2402. MR 2213713, DOI 10.1090/S0002-9939-06-08241-4
- Giorgos Chasapis and Nikos Skarmogiannis, Affine quermassintegrals of random polytopes, J. Math. Anal. Appl. 479 (2019), no. 1, 546–568. MR 3987045, DOI 10.1016/j.jmaa.2019.06.037
- M. Christ, Equality in Brascamp–Lieb–Luttinger inequalities, Manuscript, arXiv:1706.02778v1, 2017.
- Nikos Dafnis and Grigoris Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies, Illinois J. Math. 56 (2012), no. 4, 1005–1021. MR 3231472
- S. Dann, G. Paouris, and P. Pivovarov, Affine isoperimetric inequalities on flag manifolds, Manuscript, arXiv:1902.09076, 2019.
- J. Favard, Sur les corps convexes, J. Math. Pures Appl. 12 (1933), 219–282.
- W. Fenchel, Inégalités quadratiques entre les volumes mixtes des corps convexes, C. R. Acad. Sci. Paris 203 (1936), 647–650.
- Matthieu Fradelizi, Alfredo Hubard, Mathieu Meyer, Edgardo Roldán-Pensado, and Artem Zvavitch, Equipartitions and Mahler volumes of symmetric convex bodies, Amer. J. Math. 144 (2022), no. 5, 1201–1219. MR 4494180, DOI 10.1353/ajm.2022.0027
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner, The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities, Adv. Math. 216 (2007), no. 1, 358–386. MR 2353261, DOI 10.1016/j.aim.2007.05.018
- Apostolos Giannopoulos, Grigoris Paouris, and Beatrice-Helen Vritsiou, The isotropic position and the reverse Santaló inequality, Israel J. Math. 203 (2014), no. 1, 1–22. MR 3273430, DOI 10.1007/s11856-012-0173-2
- Eric L. Grinberg, Isoperimetric inequalities and identities for $k$-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75–86. MR 1125008, DOI 10.1007/BF01445191
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Peter M. Gruber′ and Johannes Hobinger, Kennzeichnungen von Ellipsoiden mit Anwendungen, Jahrbuch Überblicke Mathematik, 1976, Bibliographisches Inst., Mannheim-Vienna-Zurich, 1976, pp. 9–29 (German). MR 407723
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 102775
- Hiroshi Iriyeh and Masataka Shibata, Symmetric Mahler’s conjecture for the volume product in the $3$-dimensional case, Duke Math. J. 169 (2020), no. 6, 1077–1134. MR 4085078, DOI 10.1215/00127094-2019-0072
- Greg Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870–892. MR 2438998, DOI 10.1007/s00039-008-0669-4
- Joseph Lehec, A direct proof of the functional Santaló inequality, C. R. Math. Acad. Sci. Paris 347 (2009), no. 1-2, 55–58 (English, with English and French summaries). MR 2536749, DOI 10.1016/j.crma.2008.11.015
- L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961–962. MR 31538, DOI 10.1090/S0002-9904-1949-09320-5
- Erwin Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90 (1984), no. 3, 415–421. MR 728360, DOI 10.1090/S0002-9939-1984-0728360-3
- Erwin Lutwak, On some affine isoperimetric inequalities, J. Differential Geom. 23 (1986), no. 1, 1–13. MR 840399
- Erwin Lutwak, Inequalities for Hadwiger’s harmonic Quermassintegrals, Math. Ann. 280 (1988), no. 1, 165–175. MR 928304, DOI 10.1007/BF01474188
- Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 1087796, DOI 10.1016/0001-8708(91)90049-D
- Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979, DOI 10.1016/B978-0-444-89596-7.50010-9
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Moment-entropy inequalities, Ann. Probab. 32 (2004), no. 1B, 757–774. MR 2039942, DOI 10.1214/aop/1079021463
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220–242. MR 2563216, DOI 10.1016/j.aim.2009.08.002
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- K. Mahler, Ein minimalproblem für konvexe polygone, Mathematica (Zutphen) B 7 (1939), 118–127.
- Kurt Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys. 68 (1939), 93–102 (German). MR 1242
- Horst Martini, Luis Montejano, and Déborah Oliveros, Bodies of constant width, Birkhäuser/Springer, Cham, 2019. An introduction to convex geometry with applications. MR 3930585, DOI 10.1007/978-3-030-03868-7
- Mathieu Meyer and Alain Pajor, On the Blaschke-Santaló inequality, Arch. Math. (Basel) 55 (1990), no. 1, 82–93. MR 1059519, DOI 10.1007/BF01199119
- Mathieu Meyer and Shlomo Reisner, Shadow systems and volumes of polar convex bodies, Mathematika 53 (2006), no. 1, 129–148 (2007). MR 2304056, DOI 10.1112/S0025579300000061
- Mathieu Meyer and Shlomo Reisner, Ellipsoids are the only local maximizers of the volume product, Mathematika 65 (2019), no. 3, 500–504. MR 3918350, DOI 10.1112/s0025579319000056
- Fedor Nazarov, The Hörmander proof of the Bourgain-Milman theorem, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 335–343. MR 2985302, DOI 10.1007/978-3-642-29849-3_{2}0
- S. P. Olovjanishnikov, On a characterization of the ellipsoid, Učen. Zap. Leningrad. State Univ. Ser. Mat. 83 (1941), 114–128.
- Grigoris Paouris and Peter Pivovarov, Small-ball probabilities for the volume of random convex sets, Discrete Comput. Geom. 49 (2013), no. 3, 601–646. MR 3038532, DOI 10.1007/s00454-013-9492-2
- C. M. Petty, Isoperimetric problems, Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971) University of Oklahoma, Department of Mathematics, Norman, OK, 1971, pp. 26–41. MR 362057
- Clinton M. Petty, Ellipsoids, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 264–276. MR 731114
- C. M. Petty, Affine isoperimetric problems, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 113–127. MR 809198, DOI 10.1111/j.1749-6632.1985.tb14545.x
- C. A. Rogers, A single integral inequality, J. London Math. Soc. 32 (1957), 102–108. MR 86113, DOI 10.1112/jlms/s1-32.1.102
- C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93–102. MR 104203, DOI 10.1112/S0025579300001418
- J. Saint-Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25 (French). MR 670798
- L. A. Santaló, An affine invariant for convex bodies of $n$-dimensional space, Portugal. Math. 8 (1949), 155–161 (Spanish). MR 39293
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Rolf Schneider and Wolfgang Weil, Stochastic and integral geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008. MR 2455326, DOI 10.1007/978-3-540-78859-1
- G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229–236. MR 179686, DOI 10.1007/BF02759738
- Valeriu Soltan, Characteristic properties of ellipsoids and convex quadrics, Aequationes Math. 93 (2019), no. 2, 371–413. MR 3927058, DOI 10.1007/s00010-018-0620-1
- P. Urysohn, Mean width and volume of convex bodies in $n$-dimensional space (Russian), Rec. Math. Soc. Math. Moscow 31 (1924), 477–486.
- Gao Yong Zhang, Restricted chord projection and affine inequalities, Geom. Dedicata 39 (1991), no. 2, 213–222. MR 1119653, DOI 10.1007/BF00182294
- Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183–202. MR 1776095
- Du Zou and Ge Xiong, New affine inequalities and projection mean ellipsoids, Calc. Var. Partial Differential Equations 58 (2019), no. 2, Paper No. 44, 18. MR 3910886, DOI 10.1007/s00526-019-1497-0
Bibliographic Information
- Emanuel Milman
- Affiliation: Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- MR Author ID: 696280
- Email: emilman@tx.technion.ac.il
- Amir Yehudayoff
- Affiliation: Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
- MR Author ID: 815742
- Email: amir.yehudayoff@gmail.com
- Received by editor(s): December 17, 2020
- Received by editor(s) in revised form: June 14, 2022
- Published electronically: December 12, 2022
- Additional Notes: The research leading to these results was part of a project that had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 637851). This work was supported by the Israeli Science Foundation grant #1162/15.
- © Copyright 2022 by the authors.
- Journal: J. Amer. Math. Soc. 36 (2023), 1061-1101
- MSC (2020): Primary 52A40
- DOI: https://doi.org/10.1090/jams/1013
- MathSciNet review: 4618955