The Vlasov–Poisson–Landau system in the weakly collisional regime
HTML articles powered by AMS MathViewer
- by Sanchit Chaturvedi, Jonathan Luk and Toan T. Nguyen;
- J. Amer. Math. Soc. 36 (2023), 1103-1189
- DOI: https://doi.org/10.1090/jams/1014
- Published electronically: January 10, 2023
- HTML | PDF | Request permission
Abstract:
Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a $3$-torus, i.e. \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with $\nu \ll 1$. We prove that for $\epsilon >0$ sufficiently small (but independent of $\nu$), initial data which are $O(\epsilon \nu ^{1/3})$-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as $t\to \infty$. The solutions exhibit uniform-in-$\nu$ Landau damping and enhanced dissipation.
Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.
References
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl. (Singap.) 9 (2011), no. 2, 113–134. MR 2793203, DOI 10.1142/S0219530511001777
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys. 304 (2011), no. 2, 513–581. MR 2795331, DOI 10.1007/s00220-011-1242-9
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal. 262 (2012), no. 3, 915–1010. MR 2863853, DOI 10.1016/j.jfa.2011.10.007
- C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 2, 101–118 (English, with French summary). MR 794002, DOI 10.1016/s0294-1449(16)30405-x
- C. Bardos, P. Degond, and F. Golse, A priori estimates and existence results for the Vlasov and Boltzmann equations, Nonlinear systems of partial differential equations in applied mathematics, Part 2 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 189–207. MR 837706
- Margaret Beck and C. Eugene Wayne, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 5, 905–927. MR 3109765, DOI 10.1017/S0308210511001478
- Jacob Bedrossian, Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation, Ann. PDE 3 (2017), no. 2, Paper No. 19, 66. MR 3719106, DOI 10.1007/s40818-017-0036-6
- Jacob Bedrossian, Nonlinear echoes and Landau damping with insufficient regularity, Tunis. J. Math. 3 (2021), no. 1, 121–205. MR 4149085, DOI 10.2140/tunis.2021.3.121
- Jacob Bedrossian and Michele Coti Zelati, Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows, Arch. Ration. Mech. Anal. 224 (2017), no. 3, 1161–1204. MR 3621820, DOI 10.1007/s00205-017-1099-y
- Jacob Bedrossian, Pierre Germain, and Nader Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold case, Mem. Amer. Math. Soc. 279 (2022), no. 1377, v+135. MR 4458538, DOI 10.1090/memo/1377
- Jacob Bedrossian, Pierre Germain, and Nader Masmoudi, On the stability threshold for the 3D Couette flow in Sobolev regularity, Ann. of Math. (2) 185 (2017), no. 2, 541–608. MR 3612004, DOI 10.4007/annals.2017.185.2.4
- Jacob Bedrossian, Pierre Germain, and Nader Masmoudi, Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 3, 373–414. MR 3974608, DOI 10.1090/bull/1649
- Jacob Bedrossian, Pierre Germain, and Nader Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold case, Mem. Amer. Math. Soc. 266 (2020), no. 1294, v+158. MR 4126259, DOI 10.1090/memo/1294
- Jacob Bedrossian and Siming He, Inviscid damping and enhanced dissipation of the boundary layer for 2D Navier-Stokes linearized around Couette flow in a channel, Comm. Math. Phys. 379 (2020), no. 1, 177–226. MR 4152270, DOI 10.1007/s00220-020-03851-9
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping: paraproducts and Gevrey regularity, Ann. PDE 2 (2016), no. 1, Art. 4, 71. MR 3489904, DOI 10.1007/s40818-016-0008-2
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping in finite regularity for unconfined systems with screened interactions, Comm. Pure Appl. Math. 71 (2018), no. 3, 537–576. MR 3762277, DOI 10.1002/cpa.21730
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Linearized wave-damping structure of Vlasov-Poisson in $\Bbb R^3$, SIAM J. Math. Anal. 54 (2022), no. 4, 4379–4406. MR 4455191, DOI 10.1137/20M1386141
- Jacob Bedrossian, Nader Masmoudi, and Vlad Vicol, Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow, Arch. Ration. Mech. Anal. 219 (2016), no. 3, 1087–1159. MR 3448924, DOI 10.1007/s00205-015-0917-3
- Jacob Bedrossian, Vlad Vicol, and Fei Wang, The Sobolev stability threshold for 2D shear flows near Couette, J. Nonlinear Sci. 28 (2018), no. 6, 2051–2075. MR 3867637, DOI 10.1007/s00332-016-9330-9
- Jacob Bedrossian and Fei Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, J. Stat. Phys. 178 (2020), no. 2, 552–594. MR 4055251, DOI 10.1007/s10955-019-02441-x
- Léo Bigorgne, Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions, Mém. Soc. Math. Fr. (N.S.) 172 (2022), vi+123 (French, with English and French summaries). MR 4404996, DOI 10.24033/msmf.48
- Léo Bigorgne, David Fajman, Jérémie Joudioux, Jacques Smulevici, and Maximilian Thaller, Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal. 242 (2021), no. 1, 1–147. MR 4302757, DOI 10.1007/s00205-021-01639-2
- T. J. M. Boyd and J. J. Sanderson, The physics of plasmas, Cambridge University Press, Cambridge, 2003. MR 1960956, DOI 10.1017/CBO9780511755750
- E. Caglioti and C. Maffei, Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Statist. Phys. 92 (1998), no. 1-2, 301–323. MR 1645659, DOI 10.1023/A:1023055905124
- K. Carrapatoso and S. Mischler, Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE 3 (2017), no. 1, Paper No. 1, 65. MR 3625186, DOI 10.1007/s40818-017-0021-0
- Kleber Carrapatoso, Isabelle Tristani, and Kung-Chien Wu, Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal. 221 (2016), no. 1, 363–418. MR 3483898, DOI 10.1007/s00205-015-0963-x
- Kleber Carrapatoso, Isabelle Tristani, and Kung-Chien Wu, Erratum to: Cauchy problem and exponential stability for the inhomogeneous Landau equation [ MR3483898], Arch. Ration. Mech. Anal. 223 (2017), no. 2, 1035–1037. MR 3590672, DOI 10.1007/s00205-016-1064-1
- Sanchit Chaturvedi. Stability of vacuum for the Landau equation with hard potentials. arXiv:2001.07208, preprint, 2020.
- Sanchit Chaturvedi, Stability of vacuum for the Boltzmann equation with moderately soft potentials, Ann. PDE 7 (2021), no. 2, Paper No. 15, 104. MR 4270852, DOI 10.1007/s40818-021-00103-4
- Qi Chen, Te Li, Dongyi Wei, and Zhifei Zhang, Transition threshold for the 2-D Couette flow in a finite channel, Arch. Ration. Mech. Anal. 238 (2020), no. 1, 125–183. MR 4121130, DOI 10.1007/s00205-020-01538-y
- Michele Coti Zelati, Tarek M. Elgindi, and Klaus Widmayer, Enhanced dissipation in the Navier-Stokes equations near the Poiseuille flow, Comm. Math. Phys. 378 (2020), no. 2, 987–1010. MR 4134940, DOI 10.1007/s00220-020-03814-0
- Dingqun Deng, Smoothing estimates of the Vlasov-Poisson-Landau system, J. Differential Equations 301 (2021), 112–168. MR 4303778, DOI 10.1016/j.jde.2021.08.022
- Mark R. Dennis, Paul Glendinning, Paul A. Martin, Fadil Santosa, and Jared Tanner (eds.), The Princeton companion to applied mathematics, Princeton University Press, Princeton, NJ, 2015.
- L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159 (2005), no. 2, 245–316. MR 2116276, DOI 10.1007/s00222-004-0389-9
- Laurent Desvillettes, Hypocoercivity: the example of linear transport, Recent trends in partial differential equations, Contemp. Math., vol. 409, Amer. Math. Soc., Providence, RI, 2006, pp. 33–53. MR 2243948, DOI 10.1090/conm/409/07705
- Laurent Desvillettes and Francesco Salvarani, Asymptotic behavior of degenerate linear transport equations, Bull. Sci. Math. 133 (2009), no. 8, 848–858. MR 2569870, DOI 10.1016/j.bulsci.2008.09.001
- Shijin Ding and Zhilin Lin, Enhanced dissipation and transition threshold for the 2-D plane Poiseuille flow via resolvent estimate, J. Differential Equations 332 (2022), 404–439. MR 4439377, DOI 10.1016/j.jde.2022.06.004
- Renjun Duan, Shuangqian Liu, Shota Sakamoto, and Robert M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math. 74 (2021), no. 5, 932–1020. MR 4230064, DOI 10.1002/cpa.21920
- Renjun Duan, Tong Yang, and Huijiang Zhao, Global solutions to the Vlasov–Poisson–Landau system, Preprint, arXiv:1112.3261, 2011.
- Renjun Duan and Hongjun Yu, The Vlasov-Poisson-Landau system near a local Maxwellian, Adv. Math. 362 (2020), 106956, 83. MR 4050580, DOI 10.1016/j.aim.2019.106956
- B. Dubrulle and S. Nazarenko, On scaling laws for the transition to turbulence in uniform-shear flows, Europhys. Lett. (EPL) 27 (1994), no. 2, 129–134.
- Mitia Duerinckx and Raphael Winter, Well-posedness of the Lenard-Balescu equation with smooth interactions, Preprint, arXiv:2111.13320, 2021.
- J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Comm. Math. Phys. 235 (2003), no. 2, 233–253. MR 1969727, DOI 10.1007/s00220-003-0805-9
- David Fajman, Jérémie Joudioux, and Jacques Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE 14 (2021), no. 2, 425–531. MR 4241806, DOI 10.2140/apde.2021.14.425
- David Fajman, Jérémie Joudioux, and Jacques Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE 10 (2017), no. 7, 1539–1612. MR 3683922, DOI 10.2140/apde.2017.10.1539
- Thierry Gallay, Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices, Arch. Ration. Mech. Anal. 230 (2018), no. 3, 939–975. MR 3851053, DOI 10.1007/s00205-018-1262-0
- R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys. 119 (1988), no. 3, 353–384. MR 969207, DOI 10.1007/BF01218078
- Robert Glassey and Jack Schaeffer, Time decay for solutions to the linearized Vlasov equation, Transport Theory Statist. Phys. 23 (1994), no. 4, 411–453. MR 1264846, DOI 10.1080/00411459408203873
- Robert Glassey and Jack Schaeffer, On time decay rates in Landau damping, Comm. Partial Differential Equations 20 (1995), no. 3-4, 647–676. MR 1318084, DOI 10.1080/03605309508821107
- Robert T. Glassey and Walter A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys. 113 (1987), no. 2, 191–208. MR 919231, DOI 10.1007/BF01223511
- R. J. Goldston and P. H. Rutherford, Introduction to plasma physics, Institute of Physics Pub., 1997.
- Emmanuel Grenier, Toan T. Nguyen, and Igor Rodnianski, Landau damping for analytic and Gevrey data, Math. Res. Lett. 28 (2021), no. 6, 1679–1702. MR 4477671, DOI 10.4310/mrl.2021.v28.n6.a3
- Emmanuel Grenier, Toan T. Nguyen, and Igor Rodnianski, Plasma echoes near stable Penrose data, SIAM J. Math. Anal. 54 (2022), no. 1, 940–953. MR 4377026, DOI 10.1137/21M1392553
- Emmanuel Grenier, Toan T. Nguyen, Frédéric Rousset, and Avy Soffer, Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method, J. Funct. Anal. 278 (2020), no. 3, 108339, 27. MR 4030287, DOI 10.1016/j.jfa.2019.108339
- Philip T. Gressman and Robert M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc. 24 (2011), no. 3, 771–847. MR 2784329, DOI 10.1090/S0894-0347-2011-00697-8
- Yan Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002), no. 3, 391–434. MR 1946444, DOI 10.1007/s00220-002-0729-9
- Yan Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. MR 1908664, DOI 10.1002/cpa.10040
- Yan Guo, Classical solutions to the Boltzmann equation for molecules with an angular cutoff, Arch. Ration. Mech. Anal. 169 (2003), no. 4, 305–353. MR 2013332, DOI 10.1007/s00205-003-0262-9
- Yan Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. MR 2000470, DOI 10.1007/s00222-003-0301-z
- Yan Guo, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc. 25 (2012), no. 3, 759–812. MR 2904573, DOI 10.1090/S0894-0347-2011-00722-4
- Daniel Han-Kwan, Toan T. Nguyen, and Frédéric Rousset, Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates, Ann. PDE 7 (2021), no. 2, Paper No. 18, 37. MR 4303653, DOI 10.1007/s40818-021-00110-5
- Daniel Han-Kwan, Toan T. Nguyen, and Frédéric Rousset, On the linearized Vlasov-Poisson system on the whole space around stable homogeneous equilibria, Comm. Math. Phys. 387 (2021), no. 3, 1405–1440. MR 4324381, DOI 10.1007/s00220-021-04228-2
- Cong He and Yuanjie Lei, One-species Vlasov-Poisson-Landau system for soft potentials in $\Bbb {R}^3$, J. Math. Phys. 57 (2016), no. 12, 121502, 25. MR 3579859, DOI 10.1063/1.4971193
- Bernard Helffer and Francis Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. MR 2130405, DOI 10.1007/b104762
- Christopher Henderson, Stanley Snelson, and Andrei Tarfulea, Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, J. Differential Equations 266 (2019), no. 2-3, 1536–1577. MR 3906224, DOI 10.1016/j.jde.2018.08.005
- Frédéric Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal. 46 (2006), no. 3-4, 349–359. MR 2215889
- Frédéric Hérau, Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal. 244 (2007), no. 1, 95–118 (English, with English and French summaries). MR 2294477, DOI 10.1016/j.jfa.2006.11.013
- Frédéric Hérau, Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models, Lectures on the analysis of nonlinear partial differential equations. Part 5, Morningside Lect. Math., vol. 5, Int. Press, Somerville, MA, 2018, pp. 119–147. MR 3793016
- Frédéric Hérau and Francis Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), no. 2, 151–218. MR 2034753, DOI 10.1007/s00205-003-0276-3
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Ling Hsiao and Hongjun Yu, On the Cauchy problem of the Boltzmann and Landau equations with soft potentials, Quart. Appl. Math. 65 (2007), no. 2, 281–315. MR 2330559, DOI 10.1090/S0033-569X-07-01053-8
- Hyung Ju Hwang and Juan J. L. Velázquez, On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J. 58 (2009), no. 6, 2623–2660. MR 2603762, DOI 10.1512/iumj.2009.58.3835
- George L. Johnston, Dominant effects of Coulomb collisions on maintenance of Landau damping, Phys. Fluids, 14 (1971), no. 12, 2719.
- Lord Kelvin, Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates, Philos. Mag., 24 (1887), no. 5, 188–196.
- Sergiu Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), no. 3, 321–332. MR 784477, DOI 10.1002/cpa.3160380305
- J. J. Kohn, Lectures on degenerate elliptic problems, Pseudodifferential operator with applications (Bressanone, 1977) Liguori, Naples, 1978, pp. 89–151. MR 660652
- L. Landau, On the vibrations of the electronic plasma, Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz. 16 (1946), 574–586 (Russian). MR 23764
- Marco Latini and Andrew J. Bernoff, Transient anomalous diffusion in Poiseuille flow, J. Fluid Mech., 441 (2001), 399–411.
- Yuanjie Lei, Linjie Xiong, and Huijiang Zhao, One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space, Kinet. Relat. Models 7 (2014), no. 3, 551–590. MR 3317573, DOI 10.3934/krm.2014.7.551
- A. Lenard and Ira B. Bernstein, Plasma oscillations with diffusion in velocity space, Phys. Rev. (2) 112 (1958), 1456–1459. MR 105996, DOI 10.1103/PhysRev.112.1456
- Hans Lindblad and Martin Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal. 235 (2020), no. 1, 517–633. MR 4062482, DOI 10.1007/s00205-019-01425-1
- Jonathan Luk, Stability of vacuum for the Landau equation with moderately soft potentials, Ann. PDE 5 (2019), no. 1, Paper No. 11, 101. MR 3948345, DOI 10.1007/s40818-019-0067-2
- Xiang Luo, The Sobolev stability threshold of 2D hyperviscosity equations for shear flows near Couette flow, Math. Methods Appl. Sci. 43 (2020), no. 10, 6300–6323. MR 4112803, DOI 10.1002/mma.6372
- J. H. Malmberg and C. B. Wharton, Collisionless damping of electrostatic plasma waves, Phys. Rev. Lett., 13 (1964), no. 6, 184.
- J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O’Neil, Plasma wave echo experiment, Phys. Rev. Lett., 20 (1968), no. 3, 95.
- Nader Masmoudi and Weiren Zhao, Stability threshold of two-dimensional Couette flow in Sobolev spaces, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022), no. 2, 245–325. MR 4412070, DOI 10.4171/aihpc/8
- Nader Masmoudi and Weiren Zhao, Enhanced dissipation for the 2D Couette flow in critical space, Comm. Partial Differential Equations 45 (2020), no. 12, 1682–1701. MR 4176913, DOI 10.1080/03605302.2020.1791180
- Allan H. Merchant and Richard L. Liboff, Spectral properties of the linearized Balescu-Lenard operator, J. Mathematical Phys. 14 (1973), 119–129. MR 334783, DOI 10.1063/1.1666162
- C. Mouhot and C. Villani, Landau damping, J. Math. Phys. 51 (2010), no. 1, 015204, 7. MR 2605837, DOI 10.1063/1.3285283
- Clément Mouhot and Cédric Villani, On Landau damping, Acta Math. 207 (2011), no. 1, 29–201. MR 2863910, DOI 10.1007/s11511-011-0068-9
- C. S. Ng, A. Bhattacharjee, and F. Skiff, Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma, Phys. Rev. Lett., 83 (1999), no. 10, 1974.
- C. S. Ng, A. Bhattacharjee, and F. Skiff, Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: new results on old problems, Phys. Plasmas, 13 (2006), no. 5, 055903.
- Thomas M. O’Neil, Effect of Coulomb collisions and microturbulence on the plasma wave echo, Phys. Fluids, 11 (1968), no. 11, 2420–2425.
- William M’F. Orr, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, vol. 27, JSTOR, 1907, pp. 69–138.
- D. D. Ryutov, Landau damping: half a century with the great discovery, Phys. Controlled Fusion, 41 (1999), no. 3A, A1.
- R. W. Short and A. Simon, Damping of perturbations in weakly collisional plasmas, Phys. Plasmas, 9 (2002), no. 8, 3245–3253.
- Jacques Smulevici, Small data solutions of the Vlasov-Poisson system and the vector field method, Ann. PDE 2 (2016), no. 2, Art. 11, 55. MR 3595457, DOI 10.1007/s40818-016-0016-2
- Jacques Smulevici, The stability of the Minkowski space for the Einstein Vlasov system, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2017–2018, Ed. Éc. Polytech., Palaiseau, 2018, pp. Exp. No. XV, 15. MR 3968029
- Thomas H. Stix, Waves in plasmas, Springer Science & Business Media, 1992.
- Robert M. Strain, On the linearized Balescu-Lenard equation, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1551–1586. MR 2372479, DOI 10.1080/03605300601088609
- Robert M. Strain and Yan Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys. 251 (2004), no. 2, 263–320. MR 2100057, DOI 10.1007/s00220-004-1151-2
- Robert M. Strain and Yan Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations 31 (2006), no. 1-3, 417–429. MR 2209761, DOI 10.1080/03605300500361545
- Robert M. Strain and Yan Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 287–339. MR 2366140, DOI 10.1007/s00205-007-0067-3
- Robert M. Strain and Keya Zhu, The Vlasov-Poisson-Landau system in $\Bbb {R}^3_x$, Arch. Ration. Mech. Anal. 210 (2013), no. 2, 615–671. MR 3101794, DOI 10.1007/s00205-013-0658-0
- C. H. Su and C. Oberman, Collisional damping of a plasma echo, Phys. Rev. Lett., 20 (1968), no. 9, 427.
- Martin Taylor, The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system, Ann. PDE 3 (2017), no. 1, Paper No. 9, 177. MR 3629140, DOI 10.1007/s40818-017-0026-8
- Isabelle Tristani, Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime, J. Stat. Phys. 169 (2017), no. 1, 107–125. MR 3694844, DOI 10.1007/s10955-017-1848-1
- J. Vanneste, P. J. Morrison, and T. Warn, Strong echo effect and nonlinear transient growth in shear flows, Phys. Fluids, 10 (1998), no. 6, 1398–1404.
- Cédric Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141. MR 2562709, DOI 10.1090/S0065-9266-09-00567-5
- Cédric Villani, (Ir)reversibility and entropy, Time, Prog. Math. Phys., vol. 63, Birkhäuser/Springer Basel AG, Basel, 2013, pp. 19–79. MR 3076094, DOI 10.1007/978-3-0348-0359-5_{2}
- Xuecheng Wang, Decay estimates for the 3D relativistic and non-relativistic Vlasov–Poisson systems, Preprint, arXiv:1805.10837, 2018.
- Xuecheng Wang, Propagation of regularity and long time behavior of 3D massive relativistic transport equation I: Vlasov-Nordström system, Comm. Math. Phys. 382 (2021), no. 3, 1843–1934. MR 4232781, DOI 10.1007/s00220-021-03987-2
- Xuecheng Wang, Propagation of regularity and long time behavior of the 3$D$ massive relativistic transport equation II: Vlasov-Maxwell system, Comm. Math. Phys. 389 (2022), no. 2, 715–812. MR 4369718, DOI 10.1007/s00220-021-04257-x
- Yanjin Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $\Bbb R^3$, SIAM J. Math. Anal. 44 (2012), no. 5, 3281–3323. MR 3023411, DOI 10.1137/120879129
- Dongyi Wei and Zhifei Zhang, Transition threshold for the 3D Couette flow in Sobolev space, Comm. Pure Appl. Math. 74 (2021), no. 11, 2398–2479. MR 4373161, DOI 10.1002/cpa.21948
- Dongyi Wei, Zhifei Zhang, and Weiren Zhao, Linear inviscid damping and enhanced dissipation for the Kolmogorov flow, Adv. Math. 362 (2020), 106963, 103. MR 4050586, DOI 10.1016/j.aim.2019.106963
- Dongyi Wei, Zhifei Zhang, and Hao Zhu, Linear inviscid damping for the $\beta$-plane equation, Comm. Math. Phys. 375 (2020), no. 1, 127–174. MR 4082187, DOI 10.1007/s00220-020-03727-y
- Willie Wai Yeung Wong, A commuting-vector-field approach to some dispersive estimates, Arch. Math. (Basel) 110 (2018), no. 3, 273–289. MR 3761138, DOI 10.1007/s00013-017-1114-4
- Brent Young, Landau damping in relativistic plasmas, J. Math. Phys. 57 (2016), no. 2, 021502, 68. MR 3448678, DOI 10.1063/1.4939275
- J. H. Yu and C. F. Driscoll, Diocotron wave echoes in a pure electron plasma, IEEE Trans. Plasma Sci., 30 (2002), no. 1, 24–25.
- J. H. Yu, C. F. Driscoll, and T. M. O’Neil, Phase mixing and echoes in a pure electron plasma, Phys. Plasmas, 12 (2005), no. 5, 055701.
- Christian Zillinger, On enhanced dissipation for the Boussinesq equations, J. Differential Equations 282 (2021), 407–445. MR 4219325, DOI 10.1016/j.jde.2021.02.029
Bibliographic Information
- Sanchit Chaturvedi
- Affiliation: Department of Mathematics, Stanford University, 450 Jane Stanford Way, Bldg. 380, Stanford, California 94305
- MR Author ID: 1440099
- Email: sanchat@stanford.edu
- Jonathan Luk
- Affiliation: Department of Mathematics, Stanford University, 450 Jane Stanford Way, Bldg. 380, Stanford, California 94305
- MR Author ID: 916843
- Email: jluk@stanford.edu
- Toan T. Nguyen
- Affiliation: Department of Mathematics, Penn State University, State College, Pennsylvania 16802
- MR Author ID: 718370
- Email: nguyen@math.psu.edu
- Received by editor(s): April 26, 2021
- Received by editor(s) in revised form: July 4, 2022
- Published electronically: January 10, 2023
- Additional Notes: The first and second authors were supported by the NSF grant DMS-2005435. The second author was also supported by a Terman Fellowship. The third author was partly supported by the NSF under grant DMS-1764119, an AMS Centennial fellowship, and a Simons fellowship.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 1103-1189
- MSC (2020): Primary 35Q99, 82C40
- DOI: https://doi.org/10.1090/jams/1014
- MathSciNet review: 4618956