Dimensions of modular irreducible representations of semisimple Lie algebras
HTML articles powered by AMS MathViewer
- by Roman Bezrukavnikov and Ivan Losev;
- J. Amer. Math. Soc. 36 (2023), 1235-1304
- DOI: https://doi.org/10.1090/jams/1017
- Published electronically: March 16, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we classify and give Kazhdan-Lusztig type character formulas for equivariantly irreducible representations of Lie algebras of reductive algebraic groups over a field of large positive characteristic. The equivariance is with respect to a group whose connected component is a torus. Character computation is done in two steps. First, we treat the case of distinguished $p$-characters: those that are not contained in a proper Levi. Here we essentially show that the category of equivariant modules we consider is a cell quotient of an affine parabolic category $\mathcal {O}$. For this, we prove an equivalence between two categorifications of a parabolically induced module over the affine Hecke algebra conjectured by the first named author. For the general nilpotent $p$-character, we get character formulas by explicitly computing the duality operator on a suitable equivariant K-group.References
- Pramod N. Achar, Perverse sheaves and applications to representation theory, Mathematical Surveys and Monographs, vol. 258, American Mathematical Society, Providence, RI, [2021] ©2021. MR 4337423, DOI 10.1090/surv/258
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- Dmitry Arinkin and Roman Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), no. 1, 3–29, 271 (English, with English and Russian summaries). MR 2668828, DOI 10.17323/1609-4514-2010-10-1-3-29
- S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirković, Modules over the small quantum group and semi-infinite flag manifold, Transform. Groups 10 (2005), no. 3-4, 279–362. MR 2183116, DOI 10.1007/s00031-005-0401-5
- A. A. Beĭlinson, On the derived category of perverse sheaves, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR 923133, DOI 10.1007/BFb0078365
- A. Beilinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), no. 3, 547–557, 782 (English, with English and Russian summaries). MR 2119139, DOI 10.17323/1609-4514-2004-4-3-547-557
- Roman Bezrukavnikov, On two geometric realizations of an affine Hecke algebra, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 1–67. MR 3502096, DOI 10.1007/s10240-015-0077-x
- R. V. Bezrukavnikov and D. B. Kaledin, McKay equivalence for symplectic resolutions of quotient singularities, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 20–42 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 13–33. MR 2101282
- Roman Bezrukavnikov and Ivan Losev, On dimension growth of modular irreducible representations of semisimple Lie algebras, Lie groups, geometry, and representation theory, Progr. Math., vol. 326, Birkhäuser/Springer, Cham, 2018, pp. 59–89. MR 3890205, DOI 10.1007/978-3-030-02191-7_{3}
- Roman Bezrukavnikov and Ivan Mirković, Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. of Math. (2) 178 (2013), no. 3, 835–919. With an appendix by Eric Sommers. MR 3092472, DOI 10.4007/annals.2013.178.3.2
- Roman Bezrukavnikov, Ivan Mirković, and Dmitriy Rumynin, Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 1–55. MR 2285230, DOI 10.1017/S0027763000009302
- Roman Bezrukavnikov, Ivan Mirković, and Dmitriy Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991. With an appendix by Bezrukavnikov and Simon Riche. MR 2415389, DOI 10.4007/annals.2008.167.945
- Roman Bezrukavnikov and Simon Riche, Affine braid group actions on derived categories of Springer resolutions, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 4, 535–599 (2013) (English, with English and French summaries). MR 3059241, DOI 10.24033/asens.2173
- Roman Bezrukavnikov and Simon Riche, A topological approach to Soergel theory, Representation theory and algebraic geometry—a conference celebrating the birthdays of Sasha Beilinson and Victor Ginzburg, Trends Math., Birkhäuser/Springer, Cham, [2022] ©2022, pp. 267–343. MR 4486919, DOI 10.1007/978-3-030-82007-7_{7}
- Roman Bezrukavnikov and Zhiwei Yun, On Koszul duality for Kac-Moody groups, Represent. Theory 17 (2013), 1–98. MR 3003920, DOI 10.1090/S1088-4165-2013-00421-1
- Walter Borho and Jean-Luc Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, 437–476. MR 679767, DOI 10.1007/BF01389364
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- B. Ju. Veĭsfeĭler and V. G. Kac, The irreducible representations of Lie $p$-algebras, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 28–36 (Russian). MR 285575
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84 (1996), no. 3, 771–813. MR 1408544, DOI 10.1215/S0012-7094-96-08424-0
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335–381. MR 1239506, DOI 10.1090/S0894-0347-1994-1239506-X
- Ivan Losev, Dimensions of irreducible modules over W-algebras and Goldie ranks, Invent. Math. 200 (2015), no. 3, 849–923. MR 3348140, DOI 10.1007/s00222-014-0541-0
- Ivan Losev and Ivan Panin, Goldie ranks of primitive ideals and indexes of equivariant Azumaya algebras, Mosc. Math. J. 21 (2021), no. 2, 383–399. MR 4252456, DOI 10.17323/1609-4514-2021-21-2-383-399
- George Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164. MR 591724, DOI 10.1016/0001-8708(80)90031-6
- George Lusztig, Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 2, 297–328. MR 1015001
- George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1923, 231–246. MR 1276910, DOI 10.1098/rspa.1994.0058
- G. Lusztig, Periodic $W$-graphs, Represent. Theory 1 (1997), 207–279. MR 1464171, DOI 10.1090/S1088-4165-97-00033-2
- G. Lusztig, Bases in equivariant $K$-theory, Represent. Theory 2 (1998), 298–369. MR 1637973, DOI 10.1090/S1088-4165-98-00054-5
- G. Lusztig, Bases in equivariant $K$-theory. II, Represent. Theory 3 (1999), 281–353. MR 1714628, DOI 10.1090/S1088-4165-99-00083-7
- Alexander Premet, Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture, Invent. Math. 121 (1995), no. 1, 79–117. MR 1345285, DOI 10.1007/BF01884291
- Simon Riche, Geometric braid group action on derived categories of coherent sheaves, Represent. Theory 12 (2008), 131–169. With a joint appendix with Roman Bezrukavnikov. MR 2390670, DOI 10.1090/S1088-4165-08-00325-7
- C. Stroppel, Untersuchungen zu den parabolischen Kazhdan-Lusztig-Polynomen für affine Weyl-Gruppen, Master Thesis, 1997.
- F. D. Veldkamp, The center of the universal enveloping algebra of a Lie algebra in characteristic $p$, Ann. Sci. École Norm. Sup. (4) 5 (1972), 217–240. MR 308227, DOI 10.24033/asens.1225
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Roman Bezrukavnikov
- Affiliation: Department of Mathematics, MIT, Cambridge, Massachusetts 02139
- MR Author ID: 347192
- Email: bezrukav@math.mit.edu
- Ivan Losev
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06511
- MR Author ID: 775766
- Email: ivan.loseu@yale.edu
- Received by editor(s): November 5, 2020
- Received by editor(s) in revised form: March 22, 2022, and August 30, 2022
- Published electronically: March 16, 2023
- Additional Notes: The first author was partially supported by the NSF under grant DMS-1601953. The second author was partially supported by the NSF under grant DMS-1501558.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 36 (2023), 1235-1304
- MSC (2020): Primary 17B20, 17B35, 17B50
- DOI: https://doi.org/10.1090/jams/1017
- MathSciNet review: 4618958