Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds
HTML articles powered by AMS MathViewer
- by Olivier Debarre, Daniel Huybrechts, Emanuele Macrì and Claire Voisin;
- J. Amer. Math. Soc. 37 (2024), 151-185
- DOI: https://doi.org/10.1090/jams/1016
- Published electronically: February 17, 2023
- HTML | PDF | Request permission
Abstract:
We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3$^{[2]}$ deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3$^{[2]}$ numerical type are of K3$^{[2]}$ deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions.
There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3$^{[2]}$ hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.
References
- Ekaterina Amerik and Frédéric Campana, On families of Lagrangian tori on hyperkähler manifolds, J. Geom. Phys. 71 (2013), 53–57. MR 3062453, DOI 10.1016/j.geomphys.2013.04.004
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Arend Bayer and Emanuele Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), no. 3, 505–590. MR 3279532, DOI 10.1007/s00222-014-0501-8
- T. Beckmann and J. Song, Second Chern class and Fujiki constants of hyperkähler manifolds, Eprint, arXiv:2201.07767, 2022.
- Sébastien Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, 45–76 (English, with English and French summaries). MR 2050205, DOI 10.1016/j.ansens.2003.04.002
- Stéphane Druel, Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la première classe de Chern est nulle, Math. Z. 267 (2011), no. 1-2, 413–423 (French). MR 2772258, DOI 10.1007/s00209-009-0626-4
- Akira Fujiki, Relative algebraic reduction and relative Albanese map for a fiber space in ${\cal C}$, Publ. Res. Inst. Math. Sci. 19 (1983), no. 1, 207–236. MR 700950, DOI 10.2977/prims/1195182985
- Osamu Fujino, On Kawamata’s theorem, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 305–315. MR 2779478, DOI 10.4171/007-1/14
- Shigetaka Fukuda, On numerically effective log canonical divisors, Int. J. Math. Math. Sci. 30 (2002), no. 9, 521–531. MR 1918126, DOI 10.1155/S0161171202012450
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI 10.1090/S0894-0347-02-00402-2
- Daniel Greb and Christian Lehn, Base manifolds for Lagrangian fibrations on hyperkähler manifolds, Int. Math. Res. Not. IMRN 19 (2014), 5483–5487. MR 3267377, DOI 10.1093/imrn/rnt133
- V. Gritsenko, Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel modular forms, Algebra i Analiz 11 (1999), no. 5, 100–125; English transl., St. Petersburg Math. J. 11 (2000), no. 5, 781–804. MR 1734348
- Daniel Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669. MR 1879810, DOI 10.4310/MRL.2001.v8.n5.a8
- Brendan Hassett and Yuri Tschinkel, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal. 19 (2009), no. 4, 1065–1080. MR 2570315, DOI 10.1007/s00039-009-0022-6
- Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113. MR 1664696, DOI 10.1007/s002220050280
- Daniel Huybrechts, Compact hyperkähler manifolds, Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001) Universitext, Springer, Berlin, 2003, pp. 161–225. MR 1963562
- Daniel Huybrechts, Finiteness results for compact hyperkähler manifolds, J. Reine Angew. Math. 558 (2003), 15–22. MR 1979180, DOI 10.1515/crll.2003.038
- Daniel Huybrechts, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326 (2003), no. 3, 499–513. MR 1992275, DOI 10.1007/s00208-003-0433-x
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372, DOI 10.1017/CBO9781316594193
- Daniel Huybrechts and Chenyang Xu, Lagrangian fibrations of hyperkähler fourfolds, J. Inst. Math. Jussieu 21 (2022), no. 3, 921–932. MR 4404129, DOI 10.1017/S1474748020000365
- Jun-Muk Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, Invent. Math. 174 (2008), no. 3, 625–644. MR 2453602, DOI 10.1007/s00222-008-0143-9
- C. Jiang, Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds, Eprint, arXiv:2008.04685, 2020.
- Ljudmila Kamenova and Misha Verbitsky, Pullbacks of hyperplane sections for Lagrangian fibrations are primitive, Commun. Contemp. Math. 21 (2019), no. 8, 1850065, 7. MR 4020751, DOI 10.1142/S0219199718500657
- Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), no. 3, 567–588. MR 782236, DOI 10.1007/BF01388524
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- Radu Laza, Giulia Saccà, and Claire Voisin, A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold, Acta Math. 218 (2017), no. 1, 55–135. MR 3710794, DOI 10.4310/ACTA.2017.v218.n1.a2
- Hsueh-Yung Lin, Lagrangian constant cycle subvarieties in Lagrangian fibrations, Int. Math. Res. Not. IMRN 1 (2020), 14–24. MR 4050560, DOI 10.1093/imrn/rnx334
- Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 257–322. MR 2964480, DOI 10.1007/978-3-642-20300-8_{1}5
- Eyal Markman, Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math. 53 (2013), no. 2, 345–403. MR 3079308, DOI 10.1215/21562261-2081243
- Eyal Markman, Lagrangian fibrations of holomorphic-symplectic varieties of $K3^{[n]}$-type, Algebraic and complex geometry, Springer Proc. Math. Stat., vol. 71, Springer, Cham, 2014, pp. 241–283. MR 3278577, DOI 10.1007/978-3-319-05404-9_{1}0
- Daisuke Matsushita, Addendum: “On fibre space structures of a projective irreducible symplectic manifold” [Topology 38 (1999), no. 1, 79–83; MR1644091 (99f:14054)], Topology 40 (2001), no. 2, 431–432. MR 1808227, DOI 10.1016/S0040-9383(99)00048-8
- Daisuke Matsushita, Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math. 127 (2005), no. 2, 243–259. MR 2130616, DOI 10.1353/ajm.2005.0009
- Daisuke Matsushita, On deformations of Lagrangian fibrations, K3 surfaces and their moduli, Progr. Math., vol. 315, Birkhäuser/Springer, [Cham], 2016, pp. 237–243. MR 3524170, DOI 10.1007/978-3-319-29959-4_{9}
- Daisuke Matsushita, On isotropic divisors on irreducible symplectic manifolds, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Math. Soc. Japan, Tokyo, 2017, pp. 291–312. MR 3791219, DOI 10.2969/aspm/07410291
- Giovanni Mongardi and Claudio Onorati, Birational geometry of irreducible holomorphic symplectic tenfolds of O’Grady type, Math. Z. 300 (2022), no. 4, 3497–3526. MR 4395101, DOI 10.1007/s00209-021-02966-6
- Giovanni Mongardi and Antonio Rapagnetta, Monodromy and birational geometry of O’Grady’s sixfolds, J. Math. Pures Appl. (9) 146 (2021), 31–68 (English, with English and French summaries). MR 4197280, DOI 10.1016/j.matpur.2020.12.006
- Yasunari Nagai, A characterization of certain irreducible symplectic 4-folds, Manuscripta Math. 110 (2003), no. 3, 273–282. MR 1969001, DOI 10.1007/s00229-002-0334-4
- Kieran G. O’Grady, Irreducible symplectic 4-folds numerically equivalent to $(K3)^{[2]}$, Commun. Contemp. Math. 10 (2008), no. 4, 553–608. MR 2444848, DOI 10.1142/S0219199708002909
- Wenhao Ou, Lagrangian fibrations on symplectic fourfolds, J. Reine Angew. Math. 746 (2019), 117–147. MR 3895627, DOI 10.1515/crelle-2016-0004
- Antonio Rapagnetta, Topological invariants of O’Grady’s six dimensional irreducible symplectic variety, Math. Z. 256 (2007), no. 1, 1–34. MR 2282256, DOI 10.1007/s00209-006-0022-2
- Á. Ríos Ortiz, Riemann-Roch polynomials of the known hyperkähler manifolds, Eprint, arXiv:2006.09307, 2020.
- J. Sawon, Topological bounds on hyperkähler manifolds, Eprint, arXiv:2112.11617, 2021.
- Claire Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 294–303 (French). MR 1201391, DOI 10.1017/CBO9780511662652.022
- Claire Voisin, On fibrations and measures of irrationality of hyper-Kähler manifolds, Rev. Un. Mat. Argentina 64 (2022), no. 1, 165–197. MR 4477296, DOI 10.33044/revuma.3319
- Jan Wierzba, Contractions of symplectic varieties, J. Algebraic Geom. 12 (2003), no. 3, 507–534. MR 1966025, DOI 10.1090/S1056-3911-03-00318-7
- Jan Wierzba and Jarosław A. Wiśniewski, Small contractions of symplectic 4-folds, Duke Math. J. 120 (2003), no. 1, 65–95. MR 2010734, DOI 10.1215/S0012-7094-03-12013-X
- K\B{o}ta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817–884. MR 1872531, DOI 10.1007/s002080100255
- K\B{o}ta Yoshioka, Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface, Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., vol. 69, Math. Soc. Japan, [Tokyo], 2016, pp. 473–537. MR 3616985, DOI 10.2969/aspm/06910473
Bibliographic Information
- Olivier Debarre
- Affiliation: Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris, France
- MR Author ID: 55740
- ORCID: 0000-0002-1701-1633
- Email: olivier.debarre@imj-prg.fr
- Daniel Huybrechts
- Affiliation: Universität Bonn, Mathematisches Institut and Hausdorff Center for Mathematics, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 344746
- ORCID: 0000-0003-4397-4836
- Email: huybrech@math.uni-bonn.de
- Emanuele Macrì
- Affiliation: Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, Rue Michel Magat, Bât. 307, 91405 Orsay, France
- ORCID: 0000-0002-4881-6362
- Email: emanuele.macri@universite-paris-saclay.fr
- Claire Voisin
- Affiliation: Sorbonne Université and Université Paris Cité, CNRS, IMJ-PRG, F-75005 Paris, France
- MR Author ID: 237928
- ORCID: 0000-0001-5757-8282
- Email: claire.voisin@imj-prg.fr
- Received by editor(s): January 27, 2022
- Received by editor(s) in revised form: August 3, 2022
- Published electronically: February 17, 2023
- Additional Notes: This project had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-2020-SyG-854361-HyperK)
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 151-185
- MSC (2020): Primary 14C20, 14J35, 14J42, 14J60
- DOI: https://doi.org/10.1090/jams/1016
- MathSciNet review: 4654610