The $\boldsymbol {p}$-adic Kakeya conjecture
HTML articles powered by AMS MathViewer
- by Bodan Arsovski;
- J. Amer. Math. Soc. 37 (2024), 69-80
- DOI: https://doi.org/10.1090/jams/1021
- Published electronically: May 17, 2023
- HTML | PDF | Request permission
Abstract:
We prove the natural analogue of the classical Kakeya conjecture over the $p$-adic numbers.References
- A. S. Besicovitch, The Kakeya problem, Amer. Math. Monthly 70 (1963), 697–706. MR 157266, DOI 10.2307/2312249
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22. MR 447949, DOI 10.2307/2374006
- Roy O. Davies, Some remarks on the Kakeya problem, Proc. Cambridge Philos. Soc. 69 (1971), 417–421. MR 272988, DOI 10.1017/s0305004100046867
- Manik Dhar and Zeev Dvir, Proof of the Kakeya set conjecture over rings of integers modulo square-free $N$, Comb. Theory 1 (2021), Paper No. 4, 21. MR 4396209, DOI 10.5070/C61055361
- Evan P. Dummit and Márton Hablicsek, Kakeya sets over non-Archimedean local rings, Mathematika 59 (2013), no. 2, 257–266. MR 3081770, DOI 10.1112/S002557931300003X
- Zeev Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22 (2009), no. 4, 1093–1097. MR 2525780, DOI 10.1090/S0894-0347-08-00607-3
- Jordan S. Ellenberg, Richard Oberlin, and Terence Tao, The Kakeya set and maximal conjectures for algebraic varieties over finite fields, Mathematika 56 (2010), no. 1, 1–25. MR 2604979, DOI 10.1112/S0025579309000400
- Robert Fraser, Kakeya-type sets in local fields with finite residue field, Mathematika 62 (2016), no. 2, 614–629. MR 3521344, DOI 10.1112/S0025579315000388
- Jonathan Hickman, Keith M. Rogers, and Ruixiang Zhang, Improved bounds for the Kakeya maximal conjecture in higher dimensions, Amer. J. Math. 144 (2022), no. 6, 1511–1560. MR 4521046, DOI 10.1353/ajm.2022.0037
- Jonathan Hickman and James Wright, The Fourier restriction and Kakeya problems over rings of integers modulo $N$, Discrete Anal. , posted on (2018), Paper No. 11, 54. MR 3819048, DOI 10.19086/da.3682
- Harold Jeffreys and Bertha Swirles Jeffreys, Methods of Mathematical Physics, Cambridge, at the University Press, 1950. 2d ed. MR 35791
- Nets Hawk Katz, Izabella Łaba, and Terence Tao, An improved bound on the Minkowski dimension of Besicovitch sets in $\textbf {R}^3$, Ann. of Math. (2) 152 (2000), no. 2, 383–446. MR 1804528, DOI 10.2307/2661389
- Nets Hawk Katz and Terence Tao, New bounds for Kakeya problems, J. Anal. Math. 87 (2002), 231–263. Dedicated to the memory of Thomas H. Wolff. MR 1945284, DOI 10.1007/BF02868476
- Nets Hawk Katz and Joshua Zahl, An improved bound on the Hausdorff dimension of Besicovitch sets in $\Bbb {R}^3$, J. Amer. Math. Soc. 32 (2019), no. 1, 195–259. MR 3868003, DOI 10.1090/jams/907
- Nets Hawk Katz and Joshua Zahl, A Kakeya maximal function estimate in four dimensions using planebrushes, Rev. Mat. Iberoam. 37 (2021), no. 1, 317–359. MR 4201413, DOI 10.4171/rmi/1219
- E. E. Kummer, Über die hypergeometrische Reihe, J. Reine Angew. Math. 15 (1836), 39–83 (German). MR 1578088, DOI 10.1515/crll.1836.15.39
- I. Łaba and T. Tao, An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension, Geom. Funct. Anal. 11 (2001), no. 4, 773–806. MR 1866801, DOI 10.1007/PL00001685
- J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Mach. 27 (1980), no. 4, 701–717. MR 594695, DOI 10.1145/322217.322225
- Thomas Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), no. 3, 651–674. MR 1363209, DOI 10.4171/RMI/188
- Thomas Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics, Princeton, NJ, 1999, pp. 129–162.
- Joshua Zahl, New Kakeya estimates using Gromov’s algebraic lemma, Adv. Math. 380 (2021), Paper No. 107596, 42. MR 4205111, DOI 10.1016/j.aim.2021.107596
- Richard Zippel, Probabilistic algorithms for sparse polynomials, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 216–226. MR 575692
Bibliographic Information
- Bodan Arsovski
- Affiliation: School of Mathematics and Statistics, University of Sheffield, United Kingdom
- Address at time of publication: Department of Mathematics, UCL, United Kingdom
- MR Author ID: 932059
- Email: bodan.arsovski@outlook.com
- Received by editor(s): November 1, 2021
- Received by editor(s) in revised form: March 22, 2022, and July 5, 2022
- Published electronically: May 17, 2023
- Additional Notes: This research was supported by the EPSRC Grant EP/R006563/1
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 69-80
- MSC (2020): Primary 28A75; Secondary 14J70
- DOI: https://doi.org/10.1090/jams/1021
- MathSciNet review: 4654608