Minimal nondegenerate extensions
HTML articles powered by AMS MathViewer
- by Theo Johnson-Freyd and David Reutter
- J. Amer. Math. Soc. 37 (2024), 81-150
- DOI: https://doi.org/10.1090/jams/1023
- Published electronically: July 20, 2023
- HTML | PDF | Request permission
Abstract:
We prove that every slightly degenerate braided fusion category admits a minimal nondegenerate extension, and hence that every pseudo-unitary super modular tensor category admits a minimal modular extension. This completes the program of characterizing minimal nondegenerate extensions of braided fusion categories.
Our proof relies on the new subject of fusion $2$-categories. We study in detail the Drinfel’d centre $\mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}})$ of the fusion $2$-category ${_{}\mathrm {Mod}\text {-}\mathcal {B}}$ of module categories of a braided fusion $1$-category $\mathcal {B}$. We show that minimal nondegenerate extensions of $\mathcal {B}$ correspond to certain trivializations of $\mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}})$. In the slightly degenerate case, such trivializations are obstructed by a class in $H^5(K(\mathbb {Z}_2, 2); \mathbb {k}^\times )$ and we use a numerical invariant—defined by evaluating a certain two-dimensional topological field theory on a Klein bottle—to prove that this obstruction always vanishes.
Along the way, we develop techniques to explicitly compute in braided fusion $2$-categories which we expect will be of independent interest. In addition to the model of $\mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}})$ in terms of braided $\mathcal {B}$-module categories, we develop a computationally useful model in terms of certain algebra objects in $\mathcal {B}$. We construct an $S$-matrix pairing for any braided fusion $2$-category, and show that it is nondegenerate for $\mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}})$. As a corollary, we identify components of $\mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}})$ with blocks in the annular category of $\mathcal {B}$ and with the homomorphisms from the Grothendieck ring of the Müger centre of $\mathcal {B}$ to the ground field.
References
- Anna Beliakova, Christian Blanchet, and Eva Contreras, Spin modular categories, Quantum Topol. 8 (2017), no. 3, 459–504. MR 3692909, DOI 10.4171/QT/95
- B. Bartlett, C. L. Douglas, C. J. Schommer-Pries, and J. Vicary, Modular categories as representations of the 3-dimensional bordism 2-category, 2015. \nolinkurl{arXiv:1509.06811}.
- Paul Bruillard, César Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric C. Rowell, and Zhenghan Wang, Fermionic modular categories and the 16-fold way, J. Math. Phys. 58 (2017), no. 4, 041704, 31. MR 3641612, DOI 10.1063/1.4982048
- A. Brochier, D. Jordan, and N. Snyder, On dualizability of braided tensor categories, 2018. \nolinkurl{arXiv:1804.07538}.
- Christian Blanchet, A spin decomposition of the Verlinde formulas for type A modular categories, Comm. Math. Phys. 257 (2005), no. 1, 1–28. MR 2163566, DOI 10.1007/s00220-005-1341-6
- John C. Baez and Martin Neuchl, Higher-dimensional algebra. I. Braided monoidal $2$-categories, Adv. Math. 121 (1996), no. 2, 196–244. MR 1402727, DOI 10.1006/aima.1996.0052
- Adrien Brochier, Cyclotomic associators and finite type invariants for tangles in the solid torus, Algebr. Geom. Topol. 13 (2013), no. 6, 3365–3409. MR 3248737, DOI 10.2140/agt.2013.13.3365
- David Ben-Zvi, Adrien Brochier, and David Jordan, Quantum character varieties and braided module categories, Selecta Math. (N.S.) 24 (2018), no. 5, 4711–4748. MR 3874702, DOI 10.1007/s00029-018-0426-y
- Shawn X. Cui, César Galindo, Julia Yael Plavnik, and Zhenghan Wang, On gauging symmetry of modular categories, Comm. Math. Phys. 348 (2016), no. 3, 1043–1064. MR 3555361, DOI 10.1007/s00220-016-2633-8
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632
- P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248 (French, with English summary). Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944506, DOI 10.17323/1609-4514-2002-2-2-227-248
- Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1–119. MR 2609644, DOI 10.1007/s00029-010-0017-z
- Alexei Davydov, Michael Müger, Dmitri Nikshych, and Victor Ostrik, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 677 (2013), 135–177. MR 3039775, DOI 10.1515/crelle.2012.014
- Alexei Davydov and Dmitri Nikshych, Braided Picard groups and graded extensions of braided tensor categories, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No. 65, 87. MR 4281262, DOI 10.1007/s00029-021-00670-1
- A. Davydov and D. Nikshych. On minimal non-degenerate extensions of braided tensor categories. Tensor categories and topological quantum field theories, Mathematical Science Research Institute, 19 March 2020. https://www.msri.org/workshops/917/schedules/28189, 2020.
- Alexei Davydov, Dmitri Nikshych, and Victor Ostrik, On the structure of the Witt group of braided fusion categories, Selecta Math. (N.S.) 19 (2013), no. 1, 237–269. MR 3022755, DOI 10.1007/s00029-012-0093-3
- C. L. Douglas and D. J. Reutter, Fusion 2-categories and a state-sum invariant for $4$-manifolds, 2018. \nolinkurl{arXiv:1812.11933}.
- Eduardo Dubuc and Ross Street, Dinatural transformations, Reports of the Midwest Category Seminar, IV, Lecture Notes in Math., Vol. 137, Springer, Berlin-New York, 1970, pp. 126–137. MR 274550
- Alexei Davydov and Darren A. Simmons, Third cohomology and fusion categories, Homology Homotopy Appl. 20 (2018), no. 1, 275–302. MR 3775361, DOI 10.4310/HHA.2018.v20.n1.a17
- C. L. Douglas, C. J. Schommer-Pries, and N. Snyder, Dualizable tensor categories II: Homotopy SO(3)-actions. In preparation. See Tensor categories and topological quantum field theories, Mathematical Science Research Institute, 16 March 2020. https://www.msri.org/workshops/917/schedules/28167.
- Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder, Dualizable tensor categories, Mem. Amer. Math. Soc. 268 (2020), no. 1308, vii+88. MR 4254952, DOI 10.1090/memo/1308
- D. E. Evans and T. Gannon, Reconstruction and local extensions for twisted group doubles, and permutation orbifolds, 2018. arXiv:1804.11145.
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI 10.2307/1969702
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010), no. 3, 209–273. With an appendix by Ehud Meir. MR 2677836, DOI 10.4171/QT/6
- Dennis Gaitsgory, Sheaves of categories and the notion of 1-affineness, Stacks and categories in geometry, topology, and algebra, Contemp. Math., vol. 643, Amer. Math. Soc., Providence, RI, 2015, pp. 127–225. MR 3381473, DOI 10.1090/conm/643/12899
- César Galindo, On braided and ribbon unitary fusion categories, Canad. Math. Bull. 57 (2014), no. 3, 506–510. MR 3239112, DOI 10.4153/CMB-2013-017-5
- D. Gaiotto and T. Johnson-Freyd, Condensations in higher categories, 2019. arXiv:1905.09566.
- Davide Gaiotto and Theo Johnson-Freyd, Symmetry protected topological phases and generalized cohomology, J. High Energy Phys. 5 (2019), 007, 34. MR 3978827, DOI 10.1007/jhep05(2019)007
- R. Gordon, A. J. Power, and Ross Street, Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995), no. 558, vi+81. MR 1261589, DOI 10.1090/memo/0558
- S. Gelaki and D. Sebbag, On finite non-degenerate braided tensor categories with a Lagrangian subcategory, 2017. arXiv:1703.05787.
- M. N. Gurski. An algebraic theory of tricategories. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–The University of Chicago, available at https://gauss.math.yale.edu/~mg622/tricats.pdf.
- Nick Gurski, Loop spaces, and coherence for monoidal and braided monoidal bicategories, Adv. Math. 226 (2011), no. 5, 4225–4265. MR 2770448, DOI 10.1016/j.aim.2010.12.007
- C. Galindo and C. F. Venegas-Ramírez, Categorical fermionic actions and minimal modular extensions, 2017. arXiv:1712.07097.
- L. W. Hansen and M. Shulman, Constructing symmetric monoidal bicategories functorially, 2019. arXiv:1910.09240.
- T. Johnson-Freyd, (3+1)D topological orders with only a $\mathbb {Z}_2$-charged particle, 2020. arXiv:2011.11165.
- Theo Johnson-Freyd, On the classification of topological orders, Comm. Math. Phys. 393 (2022), no. 2, 989–1033. MR 4444089, DOI 10.1007/s00220-022-04380-3
- T. Johnson-Freyd and D. Reutter, Pseudounitary slightly degenerate braided fusion categories admit minimal modular extensions, Wales MPPM Seminar, Cardiff University, 10 November 2020. http://categorified.net/MPPMslides.pdf.
- T. Johnson-Freyd and D. Reutter, S-matrices for higher fusion categories, In preparation.
- Theo Johnson-Freyd and Matthew Yu, Fusion 2-categories with no line operators are grouplike, Bull. Aust. Math. Soc. 104 (2021), no. 3, 434–442. MR 4338473, DOI 10.1017/S0004972721000095
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- A. Yu. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Physics 303 (2003), no. 1, 2–30. MR 1951039, DOI 10.1016/S0003-4916(02)00018-0
- Liang Kong, Tian Lan, Xiao-Gang Wen, Zhi-Hao Zhang, and Hao Zheng, Classification of topological phases with finite internal symmetries in all dimensions, J. High Energy Phys. 9 (2020), 093, 48. MR 4203166, DOI 10.1007/jhep09(2020)093
- R. C. Kirby and L. R. Taylor, $\textrm {Pin}$ structures on low-dimensional manifolds, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 177–242. MR 1171915
- L. Kong and X.-G. Wen, Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions, 2014. arXiv:1405.5858.
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers, 2015. arXiv:1502.01690.
- L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk relation in topological orders, Nuclear Phys. B 922 (2017), no. 9, 62–76.
- Tian Lan, Liang Kong, and Xiao-Gang Wen, Modular extensions of unitary braided fusion categories and $2+1\textrm {D}$ topological/SPT orders with symmetries, Comm. Math. Phys. 351 (2017), no. 2, 709–739. MR 3613518, DOI 10.1007/s00220-016-2748-y
- T. Lan, L. Kong, and X.-G. Wen, Classification of (3+1)d bosonic topological orders: The case when pointlike excitations are all bosons, Phys. Rev. X 8 (2018), no 2. \nolinkurl{arXiv:1704.04221}.
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- T. Lan and X.-G. Wen, Classification of $3+1\mathrm {D}$ bosonic topological orders (ii): The case when some pointlike excitations are fermions, Phys. Rev. X 9 (2019), 021005.
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038, DOI 10.1007/BF01238857
- Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291–308. MR 1990929, DOI 10.1112/S0024611503014187
- Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177–206. MR 1976459, DOI 10.1007/s00031-003-0515-6
- V. Ostrik, The group of modular extensions of a symmetric tensor category, Mathematical Congress of the Americas, Montreal, July 2017. https://pages.uoregon.edu/vostrik/talks/montreal1.pdf, 2017.
- Victor Ostrik and Zhiqiang Yu, On the minimal extension and structure of braided weakly group-theoretical fusion categories, Adv. Math. 419 (2023), Paper No. 108961, 16. MR 4560997, DOI 10.1016/j.aim.2023.108961
- Bodo Pareigis, On braiding and dyslexia, J. Algebra 171 (1995), no. 2, 413–425. MR 1315904, DOI 10.1006/jabr.1995.1019
- P. Pstrągowski, On dualizable objects in monoidal bicategories, framed surfaces and the Cobordism Hypothesis, 2014. arXiv:1411.6691.
- D. Reutter, Uniqueness of unitary structure for unitarizable fusion categories, 2019. arXiv:1906.09710.
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- P. Safronov, Quantum moment maps, 2019. arXiv:1901.09031.
- Jean-Pierre Serre, Cohomologie modulo $2$ des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232 (French). MR 60234, DOI 10.1007/BF02564562
- M. A. Shulman, Constructing symmetric monoidal bicategories, 2010. arXiv:1004.0993.
- Christopher John Schommer-Pries, The classification of two-dimensional extended topological field theories, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–University of California, Berkeley. MR 2713992
- C. Schommer-Pries, Invertible topological field theories, 2017. arXiv:1712.08029.
- Itiro Tamura, On Pontrjagin classes and homotopy types of manifolds, J. Math. Soc. Japan 9 (1957), 250–262. MR 91475, DOI 10.2969/jmsj/00920250
- Ying Hong Tham, Reduced tensor product on the Drinfeld center, J. Algebra 608 (2022), 573–616. MR 4447742, DOI 10.1016/j.jalgebra.2022.05.031
- Ryan Thorngren, Framed Wilson operators, fermionic strings, and gravitational anomaly in 4d, J. High Energy Phys. 2 (2015), 152, front matter+14. MR 3321301, DOI 10.1007/JHEP02(2015)152
- Vladimir G. Turaev, Modular categories and $3$-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no. 11-12, 1807–1824. Topological and quantum group methods in field theory and condensed matter physics. MR 1186845, DOI 10.1142/S0217979292000876
- C. F. Venegas-Ramírez, Minimal modular extensions for super-Tannakian categories, 2019. arXiv:1908.07487.
- Zhenghan Wang, Topological quantum computation, CBMS Regional Conference Series in Mathematics, vol. 112, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010. MR 2640343, DOI 10.1090/cbms/112
- Thomas A. Wasserman, The symmetric tensor product on the Drinfeld centre of a symmetric fusion category, J. Pure Appl. Algebra 224 (2020), no. 8, 106348, 35. MR 4074586, DOI 10.1016/j.jpaa.2020.106348
- X. G. Wen, Topological orders in rigid states, Internat. J. Modern Phys. B 4 (1990), no. 2, 239–271. MR 1043302, DOI 10.1142/S0217979290000139
- Q.-R. Wang and Z.-C. Gu, Towards a complete classification of fermionic symmetry protected topological phases in 3d and a general group supercohomology theory, 2017. arXiv:1703.10937.
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772, DOI 10.1007/BF01217730
- J. Wang, X.-G. Wen, and E. Witten, Symmetric gapped interfaces of SPT and SET states: systematic constructions, Phys. Rev. X 8 (2018), 031048.
Bibliographic Information
- Theo Johnson-Freyd
- Affiliation: Department of Mathematics, Dalhousie University, 6316 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2; and Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada, N2L 2Y5
- MR Author ID: 913559
- ORCID: 0000-0003-3617-155X
- Email: theojf@dal.ca
- David Reutter
- Affiliation: Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
- MR Author ID: 1252044
- ORCID: 0000-0003-4044-360X
- Email: david.reutter@uni-hamburg.de
- Received by editor(s): August 22, 2021
- Received by editor(s) in revised form: April 29, 2022, June 29, 2022, and July 18, 2022
- Published electronically: July 20, 2023
- Additional Notes: This work was further supported by the NSERC Discovery Grant RGPIN-2021-02424, by the Simons Collaboration on Global Categorical Symmetries, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 493608176. The first author’s research at the Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities. The second author was supported by the Max Planck Institute for Mathematics where much of this work was carried out.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 81-150
- MSC (2020): Primary 18M20, 18M15, 18N10
- DOI: https://doi.org/10.1090/jams/1023
- MathSciNet review: 4654609