A proof of the Kahn–Kalai conjecture
HTML articles powered by AMS MathViewer
- by Jinyoung Park and Huy Tuan Pham;
- J. Amer. Math. Soc. 37 (2024), 235-243
- DOI: https://doi.org/10.1090/jams/1028
- Published electronically: August 7, 2023
- HTML | PDF | Request permission
Abstract:
Proving the “expectation-threshold” conjecture of Kahn and Kalai [Combin. Probab. Comput. 16 (2007), pp. 495–502], we show that for any increasing property $\mathcal {F}$ on a finite set $X$, \[ p_c(\mathcal {F})=O(q(\mathcal {F})\log \ell (\mathcal {F})), \] where $p_c(\mathcal {F})$ and $q(\mathcal {F})$ are the threshold and “expectation threshold” of $\mathcal {F}$, and $\ell (\mathcal {F})$ is the maximum of $2$ and the maximum size of a minimal member of $\mathcal {F}$.References
- Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang, Improved bounds for the sunflower lemma, Ann. of Math. (2) 194 (2021), no. 3, 795–815. MR 4334977, DOI 10.4007/annals.2021.194.3.5
- T. Bell and A. Frieze, Rainbow powers of a Hamilton cycle in $G_{n,p}$, Preprint, arXiv:2210.08534.
- Béla Bollobás, Random graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001. MR 1864966, DOI 10.1017/CBO9780511814068
- B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38. MR 905149, DOI 10.1007/BF02579198
- B. DeMarco and J. Kahn, Note on a problem of M. Talagrand, Random Structures Algorithms 47 (2015), no. 4, 663–668. MR 3418910, DOI 10.1002/rsa.20559
- P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297. MR 120167, DOI 10.5486/pmd.1959.6.3-4.12
- P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 125031
- Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park, Thresholds versus fractional expectation-thresholds, Ann. of Math. (2) 194 (2021), no. 2, 475–495. MR 4298747, DOI 10.4007/annals.2021.194.2.2
- Keith Frankston, Jeff Kahn, and Jinyoung Park, On a problem of M. Talagrand, Random Structures Algorithms 61 (2022), no. 4, 710–723. MR 4504841, DOI 10.1002/rsa.21077
- Ehud Friedgut, Sharp thresholds of graph properties, and the $k$-sat problem, J. Amer. Math. Soc. 12 (1999), no. 4, 1017–1054. With an appendix by Jean Bourgain. MR 1678031, DOI 10.1090/S0894-0347-99-00305-7
- Ehud Friedgut, Hunting for sharp thresholds, Random Structures Algorithms 26 (2005), no. 1-2, 37–51. MR 2116574, DOI 10.1002/rsa.20042
- Geoffrey Grimmett, The random-cluster model, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag, Berlin, 2006. MR 2243761, DOI 10.1007/978-3-540-32891-9
- Johan Torkel Hastad, COMPUTATIONAL LIMITATIONS OF SMALL DEPTH CIRCUITS, ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2941107
- Svante Janson, Tomasz Łuczak, and Andrzej Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR 1782847, DOI 10.1002/9781118032718
- Anders Johansson, Jeff Kahn, and Van Vu, Factors in random graphs, Random Structures Algorithms 33 (2008), no. 1, 1–28. MR 2428975, DOI 10.1002/rsa.20224
- Jeff Kahn and Gil Kalai, Thresholds and expectation thresholds, Combin. Probab. Comput. 16 (2007), no. 3, 495–502. MR 2312440, DOI 10.1017/S0963548307008474
- Gil Kalai, Boolean functions: influence, threshold and noise, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2018, pp. 85–110. MR 3887762
- Jeff Kahn, Bhargav Narayanan, and Jinyoung Park, The threshold for the square of a Hamilton cycle, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3201–3208. MR 4273128, DOI 10.1090/proc/15419
- Richard Montgomery, Spanning trees in random graphs, Adv. Math. 356 (2019), 106793, 92. MR 3998769, DOI 10.1016/j.aim.2019.106793
- J. Park and H. T. Pham, On a conjecture of Talagrand on selector processes and a consequence on positive empirical processes, Preprint, arXiv:2204.10309 [math.PR].
- Alexander A. Razborov, Bounded arithmetic and lower bounds in Boolean complexity, Feasible mathematics, II (Ithaca, NY, 1992) Progr. Comput. Sci. Appl. Logic, vol. 13, Birkhäuser Boston, Boston, MA, 1995, pp. 344–386. MR 1322282
- Michel Talagrand, Selector processes on classes of sets, Probab. Theory Related Fields 135 (2006), no. 4, 471–486. MR 2240697, DOI 10.1007/s00440-004-0350-2
- Michel Talagrand, Are many small sets explicitly small?, STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 13–35. MR 2743011
- Michel Talagrand, Upper and lower bounds for stochastic processes, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 60, Springer, Heidelberg, 2014. Modern methods and classical problems. MR 3184689, DOI 10.1007/978-3-642-54075-2
- M. Talagrand, personal communication, 2022.
Bibliographic Information
- Jinyoung Park
- Affiliation: Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
- MR Author ID: 1378333
- ORCID: 0000-0003-3962-5668
- Email: jinyoungpark@nyu.edu
- Huy Tuan Pham
- Affiliation: Department of Mathematics, Stanford University, 450 Jane Stanford Way, Building 380, Stanford, California 94305
- MR Author ID: 1352766
- ORCID: 0000-0003-4659-4345
- Email: huypham@stanford.edu
- Received by editor(s): May 4, 2022
- Received by editor(s) in revised form: November 24, 2022
- Published electronically: August 7, 2023
- Additional Notes: The first author was supported by NSF grant DMS-2153844. The second author was supported by a Two Sigma Fellowship.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 235-243
- MSC (2020): Primary 05C80; Secondary 60C05, 06E30, 68R05
- DOI: https://doi.org/10.1090/jams/1028
- MathSciNet review: 4654612