The singular set in the Stefan problem
HTML articles powered by AMS MathViewer
- by Alessio Figalli, Xavier Ros-Oton and Joaquim Serra
- J. Amer. Math. Soc. 37 (2024), 305-389
- DOI: https://doi.org/10.1090/jams/1026
- Published electronically: July 3, 2023
- PDF | Request permission
Abstract:
In this paper we analyze the singular set in the Stefan problem and prove the following results:
These results provide us with a refined understanding of the Stefan problem’s singularities and answer some long-standing open questions in the field.
References
- Frederick J. Almgren Jr., Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. $Q$-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR 1777737
- Claudio Baiocchi, Free boundary problems in the theory of fluid flow through porous media, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congr., Montreal, QC, 1975, pp. 237–243. MR 421331
- Adrien Blanchet, On the singular set of the parabolic obstacle problem, J. Differential Equations 231 (2006), no. 2, 656–672. MR 2287901, DOI 10.1016/j.jde.2006.05.013
- Luis A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), no. 3-4, 155–184. MR 454350, DOI 10.1007/BF02392236
- Luis A. Caffarelli, Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J. 27 (1978), no. 1, 73–77. MR 466965, DOI 10.1512/iumj.1978.27.27006
- Luis A. Caffarelli and Avner Friedman, Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J. 28 (1979), no. 1, 53–70. MR 523623, DOI 10.1512/iumj.1979.28.28004
- L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI 10.1002/cpa.3160350604
- Luis Caffarelli, Xavier Ros-Oton, and Joaquim Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, Invent. Math. 208 (2017), no. 3, 1155–1211. MR 3648978, DOI 10.1007/s00222-016-0703-3
- Donatella Danielli, Nicola Garofalo, Arshak Petrosyan, and Tung To, Optimal regularity and the free boundary in the parabolic Signorini problem, Mem. Amer. Math. Soc. 249 (2017), no. 1181, v+103. MR 3709717, DOI 10.1090/memo/1181
- Georges Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461–A1463 (French). MR 328346
- A. Figalli, Regularity of interfaces in phase transitions via obstacle problems, Proceedings of the International Congress of Mathematicians (2018).
- A. Figalli, Free boundary regularity in obstacle problems, Journ. Équ. Dériv. Partielles (2018), Exp. No. 2, 24 p.
- Alessio Figalli, Xavier Ros-Oton, and Joaquim Serra, Generic regularity of free boundaries for the obstacle problem, Publ. Math. Inst. Hautes Études Sci. 132 (2020), 181–292. MR 4179834, DOI 10.1007/s10240-020-00119-9
- Alessio Figalli and Joaquim Serra, On the fine structure of the free boundary for the classical obstacle problem, Invent. Math. 215 (2019), no. 1, 311–366. MR 3904453, DOI 10.1007/s00222-018-0827-8
- B. Frank Jones Jr., A class of singular integrals, Amer. J. Math. 86 (1964), 441–462. MR 161099, DOI 10.2307/2373175
- D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 373–391. MR 440187
- G. Lamé and B. P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquide, Ann. Chimie Physique 47 (1831), 250–256.
- Erik Lindgren and Régis Monneau, Pointwise regularity of the free boundary for the parabolic obstacle problem, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 299–347. MR 3385162, DOI 10.1007/s00526-014-0787-9
- Xavier Ros-Oton, Regularity of free boundaries in obstacle problems, Geometric measure theory and free boundary problems, Lecture Notes in Math., vol. 2284, Springer, Cham, [2021] ©2021, pp. 37–88. MR 4238495, DOI 10.1007/978-3-030-65799-4_{3}
- Xavier Ros-Oton and Joaquim Serra, The structure of the free boundary in the fully nonlinear thin obstacle problem, Adv. Math. 316 (2017), 710–747. MR 3672918, DOI 10.1016/j.aim.2017.06.032
- Wenhui Shi, An epiperimetric inequality approach to the parabolic Signorini problem, Discrete Contin. Dyn. Syst. 40 (2020), no. 3, 1813–1846. MR 4063946, DOI 10.3934/dcds.2020095
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- J. Stefan, Ueber die Theorie der Eisbildung, insbesondere ueber die Eisbildung im Polarmeere, Ann. Physik Chemie 42 (1891), 269-286.
- Lihe Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27–76. MR 1135923, DOI 10.1002/cpa.3160450103
- Brian White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000), no. 3, 665–695. MR 1758759, DOI 10.1090/S0894-0347-00-00338-6
Bibliographic Information
- Alessio Figalli
- Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
- MR Author ID: 794414
- Email: alessio.figalli@math.ethz.ch
- Xavier Ros-Oton
- Affiliation: ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; and Centre de Recerca Matemàtica, Barcelona, Spain
- MR Author ID: 920237
- Email: xros@icrea.cat
- Joaquim Serra
- Affiliation: Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
- MR Author ID: 983074
- Email: joaquim.serra@math.ethz.ch
- Received by editor(s): March 24, 2021
- Received by editor(s) in revised form: February 1, 2023, February 7, 2023, and February 8, 2023
- Published electronically: July 3, 2023
- Additional Notes: The first and third authors were funded by the European Research Council (ERC) under the Grant Agreement No 721675. The second author was supported by the European Research Council (ERC) under the Grant Agreement No 801867, the AEI project PID2021-125021NAI00 (Spain), by the Swiss NSF, by MINECO grant RED2022-134784-T (Spain), by grant 2021SGR00087 (Catalunya), and by the Spanish AEI through the María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). The third author was supported by Swiss NSF Ambizione Grant PZ00P2 180042 and by the European Research Council (ERC) under the Grant Agreement No 948029.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 305-389
- MSC (2020): Primary 35R35, 35B65
- DOI: https://doi.org/10.1090/jams/1026