Sectorial descent for wrapped Fukaya categories
HTML articles powered by AMS MathViewer
- by Sheel Ganatra, John Pardon and Vivek Shende;
- J. Amer. Math. Soc. 37 (2024), 499-635
- DOI: https://doi.org/10.1090/jams/1035
- Published electronically: October 24, 2023
- HTML | PDF
Abstract:
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.References
- Alberto Abbondandolo and Matthias Schwarz, Floer homology of cotangent bundles and the loop product, Geom. Topol. 14 (2010), no. 3, 1569–1722. MR 2679580, DOI 10.2140/gt.2010.14.1569
- Mohammed Abouzaid, On the Fukaya categories of higher genus surfaces, Adv. Math. 217 (2008), no. 3, 1192–1235. MR 2383898, DOI 10.1016/j.aim.2007.08.011
- Mohammed Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 191–240. MR 2737980, DOI 10.1007/s10240-010-0028-5
- Mohammed Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011), no. 2, 894–939. MR 2822213, DOI 10.1016/j.aim.2011.06.007
- Mohammed Abouzaid, On the wrapped Fukaya category and based loops, J. Symplectic Geom. 10 (2012), no. 1, 27–79. MR 2904032, DOI 10.4310/JSG.2012.v10.n1.a3
- Mohammed Abouzaid and Paul Seidel, Lefschetz fibration techniques in wrapped Floer cohomology, In preparation.
- Mohammed Abouzaid and Paul Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), no. 2, 627–718. MR 2602848, DOI 10.2140/gt.2010.14.627
- Denis Auroux, Fukaya categories and bordered Heegaard-Floer homology, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 917–941. MR 2827825
- Denis Auroux, Fukaya categories of symmetric products and bordered Heegaard-Floer homology, J. Gökova Geom. Topol. GGT 4 (2010), 1–54. MR 2755992
- Russell Avdek, Contact surgery, open books, and symplectic cobordisms, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–University of Southern California. MR 3193067
- Russell Avdek, Liouville hypersurfaces and connect sum cobordisms, J. Symplectic Geom. 19 (2021), no. 4, 865–957. MR 4371552, DOI 10.4310/JSG.2021.v19.n4.a2
- Paul Biran and Octav Cornea, Lagrangian cobordism. I, J. Amer. Math. Soc. 26 (2013), no. 2, 295–340. MR 3011416, DOI 10.1090/S0894-0347-2012-00756-5
- Paul Biran and Octav Cornea, Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations, Selecta Math. (N.S.) 23 (2017), no. 4, 2635–2704. MR 3703462, DOI 10.1007/s00029-017-0318-6
- Frédéric Bourgeois, Tobias Ekholm, and Yasha Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012), no. 1, 301–389. With an appendix by Sheel Ganatra and Maksim Maydanskiy. MR 2916289, DOI 10.2140/gt.2012.16.301
- Frédéric Bourgeois, Joshua M. Sabloff, and Lisa Traynor, Lagrangian cobordisms via generating families: construction and geography, Algebr. Geom. Topol. 15 (2015), no. 4, 2439–2477. MR 3402346, DOI 10.2140/agt.2015.15.2439
- Baptiste Chantraine, A note on exact Lagrangian cobordisms with disconnected Legendrian ends, Proc. Amer. Math. Soc. 143 (2015), no. 3, 1325–1331. MR 3293745, DOI 10.1090/S0002-9939-2014-12302-1
- Baptiste Chantraine, Georgios Dimitroglou Rizell, Paolo Ghiggini, and Roman Golovko, Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors, Ann. Sci. Éc. Norm. Supér. (4) (2017), 1–78, To appear, arXiv:1712.09126.
- Yuri Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002), no. 3, 441–483. MR 1946550, DOI 10.1007/s002220200212
- Kai Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 2, 115–142. MR 1911873, DOI 10.1007/s100970100036
- Kai Cieliebak and Yakov Eliashberg, From Stein to Weinstein and back, American Mathematical Society Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012. Symplectic geometry of affine complex manifolds. MR 3012475, DOI 10.1090/coll/059
- Lee Cohn, Differential graded categories are k-linear stable infinity categories, Preprint, arXiv:1308.2587, 2013, pp. 1–35.
- Sylvain Courte and Patrick Massot, Contactomorphism groups and Legendrian flexibility, Preprint, arXiv:1803.07997, 2018, pp. 1–37.
- Georgios Dimitroglou Rizell, Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016), no. 3, 811–901. MR 3548486, DOI 10.4310/JSG.2016.v14.n3.a6
- Tobias Dyckerhoff and Mikhail Kapranov, Triangulated surfaces in triangulated categories, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 6, 1473–1524. MR 3801819, DOI 10.4171/JEMS/791
- A. I. Efimov, A proof of the Kontsevich-Soibelman conjecture, Mat. Sb. 202 (2011), no. 4, 65–84 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 3-4, 527–546. MR 2830236, DOI 10.1070/SM2011v202n04ABEH004154
- Tobias Ekholm, John Etnyre, and Michael Sullivan, Non-isotopic Legendrian submanifolds in $\Bbb R^{2n+1}$, J. Differential Geom. 71 (2005), no. 1, 85–128. MR 2191769
- Tobias Ekholm, John B. Etnyre, and Joshua M. Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009), no. 1, 1–75. MR 2560107, DOI 10.1215/00127094-2009-046
- Tobias Ekholm, Ko Honda, and Tamás Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2627–2689. MR 3562353, DOI 10.4171/JEMS/650
- Tobias Ekholm and YankıLekili, Duality between Lagrangian and Legendrian invariants, Geom. Topol. 27 (2023), no. 6, 2049–2179. MR 4634745, DOI 10.2140/gt.2023.27.2049
- Tobias Ekholm and Lenhard Ng, Legendrian contact homology in the boundary of a subcritical Weinstein 4-manifold, J. Differential Geom. 101 (2015), no. 1, 67–157. MR 3356070
- Yakov Eliashberg, Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990), no. 1, 29–46. MR 1044658, DOI 10.1142/S0129167X90000034
- Yakov Eliashberg, Invariants in contact topology, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 327–338. MR 1648083
- Yakov Eliashberg, Weinstein manifolds revisited, Modern geometry: a celebration of the work of Simon Donaldson, Proc. Sympos. Pure Math., vol. 99, Amer. Math. Soc., Providence, RI, 2018, pp. 59–82. MR 3838879, DOI 10.1090/pspum/099/01737
- Yakov Eliashberg, Sheel Ganatra, and Oleg Lazarev, Flexible Lagrangians, Int. Math. Res. Not. IMRN 8 (2020), 2408–2435. MR 4090744, DOI 10.1093/imrn/rny078
- Yakov Eliashberg and Mikhael Gromov, Convex symplectic manifolds, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 135–162. MR 1128541, DOI 10.1090/pspum/052.2/1128541
- Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Chapter 10: Lagrangian Surgery and holomorphic discs from Lagrangian intersection Floer theory: anomaly and obstruction, Unpublished chapter https://www.math.kyoto-u.ac.jp/~fukaya/Chapter10071117.pdf (2007), 1–182.
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 210125, DOI 10.1007/978-3-642-85844-4
- Sheel Ganatra, Symplectic Cohomology and Duality for the Wrapped Fukaya Category, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 3121862
- Sheel Ganatra, John Pardon, and Vivek Shende, Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020), 73–200. MR 4106794, DOI 10.1007/s10240-019-00112-x
- Sheel Ganatra, John Pardon, and Vivek Shende, Microlocal Morse theory of wrapped Fukaya categories, Preprint, arXiv:1809.08807, 2018, pp. 1–84.
- Yuan Gao, Wrapped Floer cohomology and Lagrangian correspondences, Preprint, arXiv:1703.04032, 2017, pp. 1–70.
- Yuan Gao, Functors of wrapped Fukaya categories from Lagrangian correspondences, Preprint, arXiv:1712.00225, 2017, pp. 1–144.
- Emmanuel Giroux and John Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol. 21 (2017), no. 2, 963–997. MR 3626595, DOI 10.2140/gt.2017.21.963
- R. Golovko, A note on the front spinning construction, Bull. Lond. Math. Soc. 46 (2014), no. 2, 258–268. MR 3194745, DOI 10.1112/blms/bdt091
- Yoel Groman, Floer theory and reduced cohomology on open manifolds, Geom. Topol. 27 (2023), no. 4, 1273–1390. MR 4602417, DOI 10.2140/gt.2023.27.1273
- Ludmil Katzarkov and Gabriel Kerr, Partially wrapped Fukaya categories of simplicial skeleta, Preprint, arXiv:1708.06038, 2017, pp. 1–29.
- Ailsa Keating, Homological mirror symmetry for hypersurface cusp singularities, Selecta Math. (N.S.) 24 (2018), no. 2, 1411–1452. MR 3782425, DOI 10.1007/s00029-017-0334-6
- Maxim Kontsevich, Symplectic geometry of homological algebra, Preprint, 2009, pp. 1–8, http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf, http://www.ihes.fr/~maxim/TEXTS/picture.pdf.
- Maxim Konstevich, Lectures at ENS Paris, Set of notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, Spring 1998.
- YankıLekili and Alexander Polishchuk, Auslander orders over nodal stacky curves and partially wrapped Fukaya categories, J. Topol. 11 (2018), no. 3, 615–644. MR 3830878, DOI 10.1112/topo.12064
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, 2017, pp. 1–1553, Available for download.
- Volodymyr Lyubashenko, $A_\infty$-morphisms with several entries, Theory Appl. Categ. 30 (2015), Paper No. 45, 1501–1551. MR 3421458
- Volodymyr Lyubashenko and Oleksandr Manzyuk, Quotients of unital $A_\infty$-categories, Theory Appl. Categ. 20 (2008), No. 13, 405–496. MR 2425553
- Volodymyr Lyubashenko and Sergiy Ovsienko, A construction of quotient $A_\infty$-categories, Homology Homotopy Appl. 8 (2006), no. 2, 157–203. MR 2259271, DOI 10.4310/HHA.2006.v8.n2.a9
- Sikimeti Ma’u, Quilted strips, graph associahedra, and $A_\infty$ $n$-modules, Algebr. Geom. Topol. 15 (2015), no. 2, 783–799. MR 3342676, DOI 10.2140/agt.2015.15.783
- Maksim Maydanskiy and Paul Seidel, Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3 (2010), no. 1, 157–180. MR 2608480, DOI 10.1112/jtopol/jtq003
- David Nadler and Vivek Shende, Sheaf quantization in Weinstein symplectic manifolds, Preprint, arXiv:2007.10154, 2020.
- David Nadler and Hiro Lee Tanaka, A stable $\infty$-category of Lagrangian cobordisms, Adv. Math. 366 (2020), 107026, 97. MR 4070298, DOI 10.1016/j.aim.2020.107026
- Alexandru Oancea, The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann. 334 (2006), no. 1, 65–89. MR 2208949, DOI 10.1007/s00208-005-0700-0
- James Pascaleff and Nicolò Sibilla, Topological Fukaya category and mirror symmetry for punctured surfaces, Compos. Math. 155 (2019), no. 3, 599–644. MR 3923362, DOI 10.1112/s0010437x19007073
- Paul Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), no. 5, 1003–1063. MR 1978046, DOI 10.1016/S0040-9383(02)00028-9
- Paul Seidel, $A_\infty$-subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008), no. 2, 83–114. MR 2426130, DOI 10.4310/HHA.2008.v10.n2.a4
- Paul Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2441780, DOI 10.4171/063
- Paul Seidel, Fukaya ${A_\infty }$-structures associated to Lefschetz fibrations. VI, Preprint, arXiv:1810.07119v2 (2018), 1–83.
- Nick Sheridan, Versality of the relative Fukaya category, Geom. Topol. 24 (2020), no. 2, 747–884. MR 4153652, DOI 10.2140/gt.2020.24.747
- Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 165–189. MR 1274929, DOI 10.1007/978-3-0348-8508-9_{6}
- Zachary Sylvan, On partially wrapped Fukaya categories, J. Topol. 12 (2019), no. 2, 372–441. MR 3911570, DOI 10.1112/topo.12088
- Zachary Sylvan, Talks at MIT workshop on Lefschetz fibrations, March 2015.
- R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 510404, DOI 10.1017/S0305004100055535
- Katrin Wehrheim and Chris T. Woodward, Quilted Floer cohomology, Geom. Topol. 14 (2010), no. 2, 833–902. MR 2602853, DOI 10.2140/gt.2010.14.833
- Alan Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991), no. 2, 241–251. MR 1114405, DOI 10.14492/hokmj/1381413841
Bibliographic Information
- Sheel Ganatra
- Affiliation: Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., KAP 104, Los Angeles, CA 90089, USA
- MR Author ID: 978425
- ORCID: 0000-0002-8660-4811
- John Pardon
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Rd, Princeton, NJ 08544, USA
- Address at time of publication: Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11794, USA
- MR Author ID: 857067
- ORCID: 0000-0003-1469-8190
- Vivek Shende
- Affiliation: Department of Mathematics, University of California, Berkeley, Berleley, CA, 94720, USA; and Center for Quantum Mathematics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- MR Author ID: 755044
- ORCID: 0000-0002-6728-7494
- Received by editor(s): November 20, 2019
- Received by editor(s) in revised form: June 19, 2022, and April 7, 2023
- Published electronically: October 24, 2023
- Additional Notes: The first author was partially supported by NSF grants DMS–1907635 and DMS–1440140. The second author was partially supported by a Packard Fellowship and by the National Science Foundation under the Alan T. Waterman Award, Grant No. 1747553. The third author was supported by a Villum Investigator grant, a Danish National Research Foundation chair, a Novo Nordisk start package, NSF CAREER grant DMS–1654545, and the Simons–CRM scholar-in-residence program.
- © Copyright 2023 by the authors
- Journal: J. Amer. Math. Soc. 37 (2024), 499-635
- MSC (2020): Primary 53D37, 53D40, 57R17
- DOI: https://doi.org/10.1090/jams/1035
- MathSciNet review: 4695507