Infinite sumsets in sets with positive density
HTML articles powered by AMS MathViewer
- by Bryna Kra, Joel Moreira, Florian K. Richter and Donald Robertson;
- J. Amer. Math. Soc. 37 (2024), 637-682
- DOI: https://doi.org/10.1090/jams/1030
- Published electronically: August 11, 2023
- HTML | PDF | Request permission
Abstract:
Motivated by questions asked by Erdős, we prove that any set $A\subset \mathbb {N}$ with positive upper density contains, for any $k\in \mathbb {N}$, a sumset $B_1+\cdots +B_k$, where $B_1$, …, $B_k\subset \mathbb {N}$ are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of $k=2$.References
- Vitaly Bergelson, Sets of recurrence of $\textbf {Z}^m$-actions and properties of sets of differences in $\textbf {Z}^m$, J. London Math. Soc. (2) 31 (1985), no. 2, 295–304. MR 809951, DOI 10.1112/jlms/s2-31.2.295
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI 10.1007/s00222-004-0428-6
- V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, DOI 10.1090/S0894-0347-96-00194-4
- Fangzhou Cai and Song Shao, Topological characteristic factors along cubes of minimal systems, Discrete Contin. Dyn. Syst. 39 (2019), no. 9, 5301–5317. MR 3986331, DOI 10.3934/dcds.2019216
- Mauro Di Nasso, Isaac Goldbring, Renling Jin, Steven Leth, Martino Lupini, and Karl Mahlburg, On a sumset conjecture of Erdős, Canad. J. Math. 67 (2015), no. 4, 795–809. MR 3361013, DOI 10.4153/CJM-2014-016-0
- Fabien Durand, Alexander Frank, and Alejandro Maass, Eigenvalues of minimal Cantor systems, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 3, 727–775. MR 3908764, DOI 10.4171/JEMS/849
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- Paul Erdős, Problems and results on combinatorial number theory. III, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976) Lecture Notes in Math., Vol. 626, Springer, Berlin-New York, 1977, pp. 43–72. MR 472752
- Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR 2723325, DOI 10.1007/978-0-85729-021-2
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573–601. MR 133429, DOI 10.2307/2372899
- H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515. MR 157368, DOI 10.2307/2373137
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- Andrew Granville, A note on sums of primes, Canad. Math. Bull. 33 (1990), no. 4, 452–454. MR 1091350, DOI 10.4153/CMB-1990-073-7
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481–547. MR 2415379, DOI 10.4007/annals.2008.167.481
- Bernard Host, A short proof of a conjecture of Erdős proved by Moreira, Richter and Robertson, Discrete Anal. , posted on (2019), Paper No. 19, 10. MR 4042162, DOI 10.19086/da
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Uniformity seminorms on $\ell ^\infty$ and applications, J. Anal. Math. 108 (2009), 219–276. MR 2544760, DOI 10.1007/s11854-009-0024-1
- Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR 3839640, DOI 10.1090/surv/236
- Bernard Host, Bryna Kra, and Alejandro Maass, Nilsequences and a structure theorem for topological dynamical systems, Adv. Math. 224 (2010), no. 1, 103–129. MR 2600993, DOI 10.1016/j.aim.2009.11.009
- Ehud Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math. 57 (1987), no. 2, 239–255. MR 890422, DOI 10.1007/BF02772176
- A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequence of translations, Ergodic Theory Dynam. Systems 27 (2007), no. 4, 1239–1252. MR 2342974, DOI 10.1017/S0143385706000940
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295. MR 1865397, DOI 10.1007/s002220100162
- Joel Moreira, Monochromatic sums and products in $\Bbb N$, Ann. of Math. (2) 185 (2017), no. 3, 1069–1090. MR 3664819, DOI 10.4007/annals.2017.185.3.10
- Joel Moreira, Florian K. Richter, and Donald Robertson, A proof of a sumset conjecture of Erdős, Ann. of Math. (2) 189 (2019), no. 2, 605–652. MR 3919363, DOI 10.4007/annals.2019.189.2.4
- Melvyn B. Nathanson, Sumsets contained in infinite sets of integers, J. Combin. Theory Ser. A 28 (1980), no. 2, 150–155. MR 563552, DOI 10.1016/0097-3165(80)90081-3
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
- Siming Tu and Xiangdong Ye, Dynamical parallelepipeds in minimal systems, J. Dynam. Differential Equations 25 (2013), no. 3, 765–776. MR 3095274, DOI 10.1007/s10884-013-9313-6
Bibliographic Information
- Bryna Kra
- Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL, 60208-2730, USA
- MR Author ID: 363208
- ORCID: 0000-0002-5301-3839
- Email: kra@math.northwestern.edu
- Joel Moreira
- Affiliation: Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK
- MR Author ID: 1091663
- Email: joel.moreira@warwick.ac.uk
- Florian K. Richter
- Affiliation: Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Station 8, 1015 Lausanne, Switzerland
- MR Author ID: 1147216
- Email: f.richter@epfl.ch
- Donald Robertson
- Affiliation: Department of Mathematics, Alan Turing Building, University of Manchester, Manchester, M13 9PL, UK
- MR Author ID: 1149015
- ORCID: 0000-0002-2057-5026
- Email: donald.robertson@manchester.ac.uk
- Received by editor(s): June 3, 2022
- Received by editor(s) in revised form: March 28, 2023
- Published electronically: August 11, 2023
- Additional Notes: The first author was supported by National Science Foundation grant DMS-205464. The fourth author was supported by EPSRC grant V050362.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 637-682
- MSC (2020): Primary 05D10, 11B13, 37A05; Secondary 11B30
- DOI: https://doi.org/10.1090/jams/1030
- MathSciNet review: 4736526