Cartan actions of higher rank abelian groups and their classification
HTML articles powered by AMS MathViewer
- by Ralf Spatzier and Kurt Vinhage;
- J. Amer. Math. Soc. 37 (2024), 731-859
- DOI: https://doi.org/10.1090/jams/1033
- Published electronically: August 31, 2023
- HTML | PDF | Request permission
Abstract:
We study $\mathbb {R}^k \times \mathbb {Z}^\ell$ actions on arbitrary compact manifolds with a projectively dense set of Anosov elements and 1-dimensional coarse Lyapunov foliations. Such actions are called totally Cartan actions. We completely classify such actions as built from low-dimensional Anosov flows and diffeomorphisms and affine actions, verifying the Katok-Spatzier conjecture for this class. This is achieved by introducing a new tool, the action of a dynamically defined topological group describing paths in coarse Lyapunov foliations, and understanding its generators and relations. We obtain applications to the Zimmer program.References
- Artur Avila, Marcelo Viana, and Amie Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 6, 1435–1462. MR 3353805, DOI 10.4171/JEMS/534
- Werner Ballmann, Misha Brin, and Ralf Spatzier, Structure of manifolds of nonpositive curvature. II, Ann. of Math. (2) 122 (1985), no. 2, 205–235. MR 808219, DOI 10.2307/1971303
- S. Bautista and C. A. Morales, Lectures on sectional-Anosov flows, Preprint IMPA Série D 84, 2011.
- Robert Bieri, Homological dimension of discrete groups, 2nd ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779
- Christian Bonatti, Sylvain Crovisier, and Amie Wilkinson, The $C^1$ generic diffeomorphism has trivial centralizer, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 185–244. MR 2511588, DOI 10.1007/s10240-009-0021-z
- Christian Bonatti, Xavier Gómez-Mont, and Matilde Martínez, Foliated hyperbolicity and foliations with hyperbolic leaves, Ergodic Theory Dynam. Systems 40 (2020), no. 4, 881–903. MR 4069243, DOI 10.1017/etds.2018.61
- Yannick Guedes Bonthonneau, Colin Guillarmou, and Tobias Weich, SRB measures for Anosov actions, arXiv:2103.12127, 2021.
- Rufus Bowen, Maximizing entropy for a hyperbolic flow, Math. Systems Theory 7 (1974), no. 4, 300–303. MR 385928, DOI 10.1007/BF01795948
- Michael Brin, On dynamical coherence, Ergodic Theory Dynam. Systems 23 (2003), no. 2, 395–401. MR 1972227, DOI 10.1017/S0143385702001499
- Michael Brin and Garrett Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002. MR 1963683, DOI 10.1017/CBO9780511755316
- Aaron Brown, Entropy, Lyapunov exponents, and rigidity of group actions, Ensaios Matemáticos [Mathematical Surveys], vol. 33, Sociedade Brasileira de Matemática, Rio de Janeiro, 2019. With appendices by Dominique Malicet, Davi Obata, Bruno Santiago, Michele Triestino, Sébastien Alvarez and Mario Roldán; Edited by Michele Triestino. MR 4398236
- Aaron Brown, Federico Rodriguez Hertz, and Zhiren Wang, Smooth ergodic theory of $\Bbb Z^d$-actions, J. Mod. Dyn. 19 (2023), 455–540. MR 4599404, DOI 10.3934/jmd.2023014
- K. Burns and A. Katok, Manifolds with nonpositive curvature, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 307–317. MR 796758, DOI 10.1017/S0143385700002935
- Pablo D. Carrasco and Federico Rodriguez-Hertz, Equilibrium states for center isometries, arXiv:2103.07323, 2021.
- Vaughn Climenhaga, Yakov Pesin, and Agnieszka Zelerowicz, Equilibrium measures for some partially hyperbolic systems, J. Mod. Dyn. 16 (2020), 155–205. MR 4128833, DOI 10.3934/jmd.2020006
- Danijela Damjanović and Anatole Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\Bbb R^k$ actions, Discrete Contin. Dyn. Syst. 13 (2005), no. 4, 985–1005. MR 2166714, DOI 10.3934/dcds.2005.13.985
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Bbb Z^k$ actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805–1858. MR 2726100, DOI 10.4007/annals.2010.172.1805
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on $SL(n,\Bbb R)/\Gamma$, Int. Math. Res. Not. IMRN 19 (2011), 4405–4430. MR 2838045, DOI 10.1093/imrn/rnq252
- Danijela Damjanovic, Amie Wilkinson, and Disheng Xu, Transitive centralizers and fibered partially hyperbolic systems, arXiv:2303.17739, 2023.
- Danijela Damjanović and Disheng Xu, On classification of higher rank Anosov actions on compact manifold, Israel J. Math. 238 (2020), no. 2, 745–806. MR 4145817, DOI 10.1007/s11856-020-2038-4
- D. van Dantzig and B. L. van der Waerden, Über metrisch homogene räume, Abh. Math. Sem. Univ. Hamburg 6 (1928), no. 1, 367–376 (German). MR 3069509, DOI 10.1007/BF02940622
- Manfred Einsiedler, What is $\dots$ measure rigidity?, Notices Amer. Math. Soc. 56 (2009), no. 5, 600–601. MR 2509063
- Manfred Einsiedler and Elon Lindenstrauss, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2) 181 (2015), no. 3, 993–1031. MR 3296819, DOI 10.4007/annals.2015.181.3.3
- F. T. Farrell and L. E. Jones, Anosov diffeomorphisms constructed from $\pi _{1}\,\textrm {Diff}\,(S^{n})$, Topology 17 (1978), no. 3, 273–282. MR 508890, DOI 10.1016/0040-9383(78)90031-9
- F. T. Farrell and L. E. Jones, Examples of expanding endomorphisms on exotic tori, Invent. Math. 45 (1978), no. 2, 175–179. MR 474416, DOI 10.1007/BF01390271
- F. Thomas Farrell and Andrey Gogolev, Anosov diffeomorphisms constructed from $\pi _k(\textrm {Diff}(S^n))$, J. Topol. 5 (2012), no. 2, 276–292. MR 2928077, DOI 10.1112/jtopol/jts004
- David Fisher, Groups acting on manifolds: around the Zimmer program, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 72–157. MR 2807830, DOI 10.7208/chicago/9780226237909.001.0001
- David Fisher, Recent progress in the Zimmer program, arXiv:1711.07089, 2019.
- David Fisher, Boris Kalinin, and Ralf Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, J. Amer. Math. Soc. 26 (2013), no. 1, 167–198. With an appendix by James F. Davis. MR 2983009, DOI 10.1090/S0894-0347-2012-00751-6
- David Fisher, Dmitry Kleinbock, and Gregory Soifer (eds.), Dynamics, geometry, number theory—the impact of Margulis on modern mathematics, University of Chicago Press, Chicago, IL, [2022] ©2022. MR 4422048, DOI 10.7208/chicago/9780226804163.001.0001
- John Franks and Bob Williams, Anomalous Anosov flows, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 158–174. MR 591182
- Edward R. Goetze and Ralf J. Spatzier, Smooth classification of Cartan actions of higher rank semisimple Lie groups and their lattices, Ann. of Math. (2) 150 (1999), no. 3, 743–773. MR 1740993, DOI 10.2307/121055
- M. I. Graev, On free products of topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 343–354 (Russian). MR 36768
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- M. Guysinsky, The theory of non-stationary normal forms, Ergodic Theory Dynam. Systems 22 (2002), no. 3, 845–862. MR 1908557, DOI 10.1017/S0143385702000421
- Michael Handel and William P. Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980), no. 2, 95–103. MR 577356, DOI 10.1007/BF01390039
- Boris Hasselblatt, A new construction of the Margulis measure for Anosov flows, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 465–468. MR 1016664, DOI 10.1017/S0143385700005101
- Boris Hasselblatt, Problems in dynamical systems and related topics, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 273–324. MR 2369450, DOI 10.1017/CBO9780511755187.011
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X
- Steven Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. (2) 135 (1992), no. 2, 361–410. MR 1154597, DOI 10.2307/2946593
- J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana 4 (1988), no. 2, 187–193. MR 1028737, DOI 10.4171/RMI/69
- Boris Kalinin, “Non-stationary normal forms for contracting extensions,” in Damjanovic, D., Hasselblatt, B., Gogolev, A., and Pesin, Y. (Eds.). A Vision for Dynamics in the 21st Century: The Legacy of Anatole Katok, Cambridge: Cambridge University Press, 2023.
- Boris Kalinin, Anatole Katok, and Federico Rodriguez Hertz, Nonuniform measure rigidity, Ann. of Math. (2) 174 (2011), no. 1, 361–400. MR 2811602, DOI 10.4007/annals.2011.174.1.10
- Boris Kalinin and Victoria Sadovskaya, Global rigidity for totally nonsymplectic Anosov $\Bbb Z^k$ actions, Geom. Topol. 10 (2006), 929–954. MR 2240907, DOI 10.2140/gt.2006.10.929
- Boris Kalinin and Victoria Sadovskaya, On the classification of resonance-free Anosov $\Bbb Z^k$ actions, Michigan Math. J. 55 (2007), no. 3, 651–670. MR 2372620, DOI 10.1307/mmj/1197056461
- Boris Kalinin and Victoria Sadovskaya, Normal forms for non-uniform contractions, J. Mod. Dyn. 11 (2017), 341–368. MR 3642250, DOI 10.3934/jmd.2017014
- Boris Kalinin and Ralf Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007), no. 2, 468–490. MR 2322492, DOI 10.1007/s00039-007-0602-2
- A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, DOI 10.1007/BF02776025
- A. Katok and J. Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions, Israel J. Math. 93 (1996), 253–280. MR 1380646, DOI 10.1007/BF02761106
- A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 292–319; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 287–314. MR 1632177
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Anatole Katok and Ralf J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131–156. MR 1307298, DOI 10.1007/BF02698888
- A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR 1406432, DOI 10.1017/S0143385700009081
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540–574. MR 819557, DOI 10.2307/1971329
- John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- Karin Melnick, Non-stationary smooth geometric structures for contracting measurable cocycles, Ergodic Theory Dynam. Systems 39 (2019), no. 2, 392–424. MR 3893265, DOI 10.1017/etds.2017.38
- Deane Montgomery and Leo Zippin, Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, NY, 1974. Reprint of the 1955 original. MR 379739
- Dave Witte Morris, Introduction to arithmetic groups, Deductive Press, [place of publication not identified], 2015. MR 3307755
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1973. MR 385004
- Edward T. Ordman, Free products of topological groups which are $k_{\omega }$-spaces, Trans. Amer. Math. Soc. 191 (1974), 61–73. MR 352320, DOI 10.1090/S0002-9947-1974-0352320-6
- John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443, DOI 10.1007/978-1-4684-9339-9
- J. Palis and J.-C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 99–108. MR 985856, DOI 10.24033/asens.1577
- J. Palis and J.-C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 81–98. MR 985855, DOI 10.24033/asens.1576
- J. F. Plante and W. P. Thurston, Anosov flows and the fundamental group, Topology 11 (1972), 147–150. MR 295389, DOI 10.1016/0040-9383(72)90002-X
- Charles Pugh and Michael Shub, Ergodic elements of ergodic actions, Compositio Math. 23 (1971), 115–122. MR 283174
- Charles Pugh, Michael Shub, and Amie Wilkinson, Partial differentiability of invariant splittings, J. Statist. Phys. 114 (2004), no. 3-4, 891–921. MR 2035632, DOI 10.1023/B:JOSS.0000012511.80422.33
- Nan Tian Qian, Dynamics and ergodic properties of Anosov $\textbf {R}^n$ actions, Random Comput. Dynam. 2 (1994), no. 1, 21–40. MR 1265225
- Nan Tian Qian, Anosov automorphisms for nilmanifolds and rigidity of group actions, Ergodic Theory Dynam. Systems 15 (1995), no. 2, 341–359. MR 1332408, DOI 10.1017/S0143385700008415
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 507234, DOI 10.1007/978-3-642-86426-1
- Federico Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007), no. 3, 425–442. MR 2318497, DOI 10.3934/jmd.2007.1.425
- Federico Rodriguez Hertz, Maria Alejandra Rodriguez Hertz, and Raul Ures, A survey of partially hyperbolic dynamics, Partially hyperbolic dynamics, laminations, and Teichmüller flow, Fields Inst. Commun., vol. 51, Amer. Math. Soc., Providence, RI, 2007, pp. 35–87. MR 2388690
- Federico Rodriguez Hertz and Zhiren Wang, Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014), no. 1, 165–209. MR 3260859, DOI 10.1007/s00222-014-0499-y
- H. L. Royden and P. Fitzpatrick, Real analysis, Prentice Hall, 2010.
- B. Schmidt, Weakly hyperbolic actions of Kazhdan groups on tori, Geom. Funct. Anal. 16 (2006), no. 5, 1139–1156. MR 2276535, DOI 10.1007/s00039-006-0570-y
- Michael Shub, Expanding maps, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Proc. Sympos. Pure Math., XIV-XVI, Amer. Math. Soc., Providence, RI, 1970, pp. 273–276. MR 266251
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- R. J. Spatzier, An invitation to rigidity theory, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 211–231. MR 2090772
- Ralf Spatzier and Lei Yang, Exponential mixing and smooth classification of commuting expanding maps, J. Mod. Dyn. 11 (2017), 263–312. MR 3627126, DOI 10.3934/jmd.2017012
- Akshay Venkatesh, The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 1, 117–134. MR 2358379, DOI 10.1090/S0273-0979-07-01194-9
- Alberto Verjovsky, Codimension one Anosov flows, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 2, 49–77. MR 431281
- Kurt Vinhage, On the rigidity of Weyl chamber flows and Schur multipliers as topological groups, J. Mod. Dyn. 9 (2015), 25–49. MR 3395259, DOI 10.3934/jmd.2015.9.25
- Kurt Vinhage, Instability for rank one factors of product actions, arXiv:2203.14480, 2022.
- Kurt Vinhage and Zhenqi Jenny Wang, Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method, Geom. Dedicata 200 (2019), 385–439. MR 3956203, DOI 10.1007/s10711-018-0379-5
- Zhenqi Jenny Wang, Local rigidity of partially hyperbolic actions, J. Mod. Dyn. 4 (2010), no. 2, 271–327. MR 2672298, DOI 10.3934/jmd.2010.4.271
Bibliographic Information
- Ralf Spatzier
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 165315
- ORCID: 0000-0001-6289-2655
- Email: spatzier@umich.edu
- Kurt Vinhage
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- MR Author ID: 925264
- ORCID: 0000-0003-2665-7505
- Email: vinhage@math.utah.edu
- Received by editor(s): June 30, 2019
- Received by editor(s) in revised form: September 16, 2020, February 12, 2021, July 2, 2022, and May 19, 2023
- Published electronically: August 31, 2023
- Additional Notes: The first author was supported in part by NSF grants DMS 1607260 and DMS 2003712. The second author was supported in part by NSF grant DMS 1604796.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 731-859
- MSC (2010): Primary 37C85, 37D20, 37C40, 37C80, 37C15; Secondary 37C20, 22F30, 37D40, 57S20, 37A17
- DOI: https://doi.org/10.1090/jams/1033
- MathSciNet review: 4736528