Geometric local systems on very general curves and isomonodromy
HTML articles powered by AMS MathViewer
- by Aaron Landesman and Daniel Litt;
- J. Amer. Math. Soc. 37 (2024), 683-729
- DOI: https://doi.org/10.1090/jams/1038
- Published electronically: November 3, 2023
- HTML | PDF
Abstract:
We show that the minimum rank of a non-isotrivial local system of geometric origin on a suitably general $n$-pointed curve of genus $g$ is at least $2\sqrt {g+1}$. We apply this result to resolve conjectures of Esnault-Kerz and Budur-Wang. The main input is an analysis of stability properties of flat vector bundles under isomonodromic deformations, which additionally answers questions of Biswas, Heu, and Hurtubise.References
- Donu Arapura, Feng Hao, and Hongshan Li, Vanishing theorems for parabolic Higgs bundles, Math. Res. Lett. 26 (2019), no. 5, 1251–1279. MR 4049808, DOI 10.4310/MRL.2019.v26.n5.a1
- Indranil Biswas, Viktoria Heu, and Jacques Hurtubise, Isomonodromic deformations of logarithmic connections and stability, Math. Ann. 366 (2016), no. 1-2, 121–140. MR 3552235, DOI 10.1007/s00208-015-1318-5
- Indranil Biswas, Viktoria Heu, and Jacques Hurtubise, Isomonodromic deformations and very stable vector bundles of rank two, Comm. Math. Phys. 356 (2017), no. 2, 627–640. MR 3707336, DOI 10.1007/s00220-017-2987-6
- Indranil Biswas, Viktoria Heu, and Jacques Hurtubise, Isomonodromic deformations of logarithmic connections and stable parabolic vector bundles, Pure Appl. Math. Q. 16 (2020), no. 2, 191–227. MR 4085671, DOI 10.4310/pamq.2020.v16.n2.a1
- Indranil Biswas, Viktoria Heu, and Jacques Hurtubise, Isomonodromic deformations of irregular connections and stability of bundles, Comm. Anal. Geom. 29 (2021), no. 1, 1–18. MR 4234977, DOI 10.4310/CAG.2021.v29.n1.a1
- A. A. Bolibrukh, The Riemann-Hilbert problem, Uspekhi Mat. Nauk 45 (1990), no. 2(272), 3–47, 240 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 2, 1–58. MR 1069347, DOI 10.1070/RM1990v045n02ABEH002350
- A. A. Bolibruch, The Riemann-Hilbert problem and Fuchsian differential equations on the Riemann sphere, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 1159–1168. MR 1404016
- L. Brambila-Paz, I. Grzegorczyk, and P. E. Newstead, Geography of Brill-Noether loci for small slopes, J. Algebraic Geom. 6 (1997), no. 4, 645–669. MR 1487229
- Yohan Brunebarbe, Semi-positivity from Higgs bundles, Preprint, arXiv:1707.08495v1, 2017.
- Nero Budur and Botong Wang, Absolute sets and the decomposition theorem, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 2, 469–536 (English, with English and French summaries). MR 4094563, DOI 10.24033/asens.2426
- Hans U. Boden and Kôji Yokogawa, Moduli spaces of parabolic Higgs bundles and parabolic $K(D)$ pairs over smooth curves. I, Internat. J. Math. 7 (1996), no. 5, 573–598. MR 1411302, DOI 10.1142/S0129167X96000311
- Fabrizio Catanese and Michael Dettweiler, Answer to a question by Fujita on variation of Hodge structures, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Math. Soc. Japan, Tokyo, 2017, pp. 73–102. MR 3791209, DOI 10.2969/aspm/07410073
- Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), no. 2, 483–506. MR 1273413, DOI 10.1090/S0894-0347-1995-1273413-2
- Izzet Coskun, Eric Larson, and Isabel Vogt, Stability of Tschirnhausen bundles, Preprint, arXiv:2207.07257, 2022.
- James Carlson, Stefan Müller-Stach, and Chris Peters, Period mappings and period domains, Cambridge Studies in Advanced Mathematics, vol. 168, Cambridge University Press, Cambridge, 2017. Second edition of [ MR2012297]. MR 3727160
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original. MR 2215618, DOI 10.1090/chel/356
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174, DOI 10.1007/BFb0061194
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- P. Deligne, Un théorème de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1–19 (French). MR 900821, DOI 10.1007/978-1-4899-6664-3_{1}
- Michele de Franchis, Un teorema sulle involuzioni irrazionali.
- Charles F. Doran, Algebraic and geometric isomonodromic deformations, J. Differential Geom. 59 (2001), no. 1, 33–85. MR 1909248
- Anand Deopurkar and Anand Patel, Vector bundles and finite covers, Forum Math. Sigma 10 (2022), Paper No. e40, 30. MR 4436598, DOI 10.1017/fms.2022.19
- Hélène Esnault and Michael Groechenig, Cohomologically rigid local systems and integrality, Selecta Math. (N.S.) 24 (2018), no. 5, 4279–4292. MR 3874695, DOI 10.1007/s00029-018-0409-z
- Hélène Esnault and Michael Groechenig, Rigid connections and $F$-isocrystals, Acta Math. 225 (2020), no. 1, 103–158. MR 4176065, DOI 10.4310/ACTA.2020.v225.n1.a2
- Hélène Esnault and Mark Kisin, $D$-modules and finite monodromy, Selecta Math. (N.S.) 24 (2018), no. 1, 145–155. MR 3769728, DOI 10.1007/s00029-016-0294-2
- Hélène Esnault and Moritz Kerz, Local systems with quasi-unipotent monodromy at infinity are dense, Preprint, arXiv:2101.00487v5, 2021.
- Hélène Esnault and Eckart Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), no. 1, 161–194. MR 853449, DOI 10.1007/BF01391499
- Hélène Esnault and Eckart Viehweg, Semistable bundles on curves and irreducible representations of the fundamental group, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 129–138. MR 1718141, DOI 10.1090/conm/241/03632
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 282990, DOI 10.1007/BF02684654
- Alexander Grothendieck, Éléments de géométrie algébrique IV, Inst. Hauntes Études Sci. Publ. Math. 24 (1965).
- Viktoria Heu, Universal isomonodromic deformations of meromorphic rank 2 connections on curves, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 515–549 (English, with English and French summaries). MR 2667785, DOI 10.5802/aif.2531
- M. Camille Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878), 89–215. MR 1581645, DOI 10.1515/crelle-1878-18788408
- Nicholas M. Katz, Algebraic solutions of differential equations ($p$-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1–118. MR 337959, DOI 10.1007/BF01389714
- Thomas Koberda and Ramanujan Santharoubane, Quotients of surface groups and homology of finite covers via quantum representations, Invent. Math. 206 (2016), no. 2, 269–292. MR 3570293, DOI 10.1007/s00222-016-0652-x
- Brian Lawrence and Akshay Venkatesh, Diophantine problems and $p$-adic period mappings, Invent. Math. 221 (2020), no. 3, 893–999. MR 4132959, DOI 10.1007/s00222-020-00966-7
- B. Malgrange, Sur les déformations isomonodromiques. I. Singularités régulières, Mathematics and physics (Paris, 1979/1982) Progr. Math., vol. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 401–426 (French). MR 728431
- B. Malgrange, Sur les déformations isomonodromiques. II. Singularités irrégulières, Mathematics and physics (Paris, 1979/1982) Progr. Math., vol. 37, Birkhäuser Boston, Boston, MA, 1983, pp. 427–438 (French). MR 728432
- Curtis T. McMullen, From dynamics on surfaces to rational points on curves, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 2, 119–140. MR 1713286, DOI 10.1090/S0273-0979-99-00856-3
- A. N. Paršin, Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1191–1219 (Russian). MR 257086
- Chris Peters, Arakelov-type inequalities for Hodge bundles, Preprint, arXiv:math/0007102v1, 2000.
- P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute of Fundamental Research Lectures on Mathematics, No. 36, Tata Institute of Fundamental Research, Bombay, 1966. Notes by S. Anantharaman. MR 222088
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, vol. 96, Société Mathématique de France, Paris, 1982 (French). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980. MR 699278
- Adam S. Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5173–5208. MR 2931326, DOI 10.1090/S0002-9947-2012-05448-1
- Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867–918. MR 944577, DOI 10.1090/S0894-0347-1988-0944577-9
- Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), no. 3, 713–770. MR 1040197, DOI 10.1090/S0894-0347-1990-1040197-8
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- Carlos Simpson, The Hodge filtration on nonabelian cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217–281. MR 1492538, DOI 10.1090/pspum/062.2/1492538
- Carlos Simpson, Iterated destabilizing modifications for vector bundles with connection, Vector bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Providence, RI, 2010, pp. 183–206. MR 2681730, DOI 10.1090/conm/522/10300
- Kôji Yokogawa, Infinitesimal deformation of parabolic Higgs sheaves, Internat. J. Math. 6 (1995), no. 1, 125–148. MR 1307307, DOI 10.1142/S0129167X95000092
Bibliographic Information
- Aaron Landesman
- Affiliation: Department of Mathematics, Harvard University, Science Center Room 325, 1 Oxford Street, Cambridge, MA 02138
- MR Author ID: 1178036
- Email: landesman@math.harvard.edu
- Daniel Litt
- Affiliation: Department of Mathematics, University of Toronto, Bahen Centre, Room 6290, 40 St. George St., Toronto, ON, M5S 2E4
- MR Author ID: 916147
- ORCID: 0000-0003-2273-4630
- Email: daniel.litt@utoronto.ca
- Received by editor(s): February 17, 2022
- Received by editor(s) in revised form: February 7, 2023, and April 23, 2023
- Published electronically: November 3, 2023
- Additional Notes: This material was based upon work supported by the Swedish Research Council under grant no. 2016-06596 while the authors were in residence at Institut Mittag-Leffler in Djursholm, Sweden during the fall of 2021. The first author was supported by the National Science Foundation under Award No. DMS-2102955; the second author was supported by NSF grant DMS-2001196 and an NSERC grant, “Anabelian methods in arithmetic and algebraic geometry.”
- © Copyright 2023 by the authors
- Journal: J. Amer. Math. Soc. 37 (2024), 683-729
- MSC (2020): Primary 14D07; Secondary 14H60
- DOI: https://doi.org/10.1090/jams/1038
- MathSciNet review: 4736527