On Sárközy’s theorem for shifted primes
HTML articles powered by AMS MathViewer
- by Ben Green;
- J. Amer. Math. Soc. 37 (2024), 1121-1201
- DOI: https://doi.org/10.1090/jams/1036
- Published electronically: September 28, 2023
- HTML | PDF | Request permission
Abstract:
Suppose that $A \subset \{1,\dots , N\}$ has no two elements differing by $p-1$, $p$ prime. Then $|A| \ll N^{1 - c}$.References
- Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque, No. 18, Société Mathématique de France, Paris, 1974 (French). Avec une sommaire en anglais. MR 371840
- J. Bourgain, Ruzsa’s problem on sets of recurrence, Israel J. Math. 59 (1987), no. 2, 150–166. MR 920079, DOI 10.1007/BF02787258
- Todd Cochrane and Zhiyong Zheng, On upper bounds of Chalk and Hua for exponential sums, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2505–2516. MR 1838371, DOI 10.1090/S0002-9939-01-06189-5
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- E. Fogels, On the zeros of $L$-functions, Acta Arith. 11 (1965), 67–96. MR 176962, DOI 10.4064/aa-11-1-67-96
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- P. X. Gallagher, Primes in progressions to prime-power modulus, Invent. Math. 16 (1972), 191–201. MR 304327, DOI 10.1007/BF01425492
- S. W. Graham and G. Kolesnik, van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, vol. 126, Cambridge University Press, Cambridge, 1991. MR 1145488, DOI 10.1017/CBO9780511661976
- B. J. Green, An improved bound for Sárközy’s theorem for shifted primes, assuming GRH, Manuscript available on request.
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- D. R. Heath-Brown, The ternary Goldbach problem, Rev. Mat. Iberoamericana 1 (1985), no. 1, 45–59. MR 834356, DOI 10.4171/RMI/2
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Matti Jutila, On Linnik’s constant, Math. Scand. 41 (1977), no. 1, 45–62. MR 476671, DOI 10.7146/math.scand.a-11701
- T. Kamae and M. Mendès France, van der Corput’s difference theorem, Israel J. Math. 31 (1978), no. 3-4, 335–342. MR 516154, DOI 10.1007/BF02761498
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. Translated and edited by Richard A. Silverman. MR 174795, DOI 10.1063/1.3047047
- J. Lucier, Difference sets and shifted primes, Acta Math. Hungar. 120 (2008), no. 1-2, 79–102. MR 2431361, DOI 10.1007/s10474-007-7107-1
- Máté Matolcsi and Imre Z. Ruzsa, Difference sets and positive exponential sums I. General properties, J. Fourier Anal. Appl. 20 (2014), no. 1, 17–41. MR 3180887, DOI 10.1007/s00041-013-9299-9
- Djordje Milićević, Sub-Weyl subconvexity for Dirichlet $L$-functions to prime power moduli, Compos. Math. 152 (2016), no. 4, 825–875. MR 3484115, DOI 10.1112/S0010437X15007381
- Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 84, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR 1297543, DOI 10.1090/cbms/084
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Eric Naslund, Paley graphs and Sárközy’s theorem in function fields, Q. J. Math. 74 (2023), no. 2, 627–637. MR 4596213, DOI 10.1093/qmath/haac035
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 435697
- J. Pintz, A new explicit formula in the additive theory of primes with applications I. The explicit formula for the Goldbach and Generalized Twin Prime Problems, to appear in Acta Arithmetica, DOI 10.4064/aa220728-31-3.
- J. Pintz, A new explicit formula in the additive theory of primes with applications II. The exceptional set in Goldbach’s problem, arxiv preprint 1804.09084.
- S. Ramanujan, On certain trigonometrical sums and their applications in the theory of numbers [Trans. Cambridge Philos. Soc. 22 (1918), no. 13, 259–276], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 179–199. MR 2280864
- M. Ram Murty, Ramanujan series for arithmetical functions, Hardy-Ramanujan J. 36 (2013), 21–33. MR 3194792
- I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, Topics in classical number theory, Vol. I, II (Budapest, 1981) Colloq. Math. Soc. János Bolyai, vol. 34, North-Holland, Amsterdam, 1984, pp. 1419–1443. MR 781190
- Imre Z. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, Seminar on Number Theory, 1981/1982, Univ. Bordeaux I, Talence, 1982, pp. Exp. No. 18, 18. MR 695335
- I. Z. Ruzsa, On measures on intersectivity, Acta Math. Hungar. 43 (1984), no. 3-4, 335–340. MR 733865, DOI 10.1007/BF01958030
- Imre Z. Ruzsa and Tom Sanders, Difference sets and the primes, Acta Arith. 131 (2008), no. 3, 281–301. MR 2379933, DOI 10.4064/aa131-3-5
- A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), no. 3-4, 355–386. MR 487031, DOI 10.1007/BF01901984
- Siniša Slijepčević, On van der Corput property of shifted primes. part 1, Funct. Approx. Comment. Math. 48 (2013), no. part 1, 37–50. MR 3086959, DOI 10.7169/facm/2013.48.1.4
- T. C. Tao, Blog post, https://terrytao.wordpress.com/2014/12/09/254a-notes-2-complex-analytic-multiplicative-number-theory/.
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015. Translated from the 2008 French edition by Patrick D. F. Ion. MR 3363366, DOI 10.1090/gsm/163
- J. Teräväinen, Almost all alternating groups are invariably generated by two elements of prime order, Int. Math. Res. Not. IMRN (2023), rnac354.
- J. Thorner and A. Zaman, An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes, Preprint, arXiv:2208.11123.
- Ruoyi Wang, On a theorem of Sárközy for difference sets and shifted primes, J. Number Theory 211 (2020), 220–234. MR 4074556, DOI 10.1016/j.jnt.2019.10.009
Bibliographic Information
- Ben Green
- Affiliation: Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, England
- MR Author ID: 685855
- ORCID: 0000-0002-2224-1193
- Email: ben.green@maths.ox.ac.uk
- Received by editor(s): July 22, 2022
- Received by editor(s) in revised form: August 10, 2023
- Published electronically: September 28, 2023
- Additional Notes: The author was supported by a Simons Investigator grant and is grateful to the Simons Foundation for their continued support.
- © Copyright 2023 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 1121-1201
- MSC (2020): Primary 11P32
- DOI: https://doi.org/10.1090/jams/1036