A Spectral Sequence from Khovanov Homology to Knot Floer Homology
HTML articles powered by AMS MathViewer
- by Nathan Dowlin;
- J. Amer. Math. Soc. 37 (2024), 951-1010
- DOI: https://doi.org/10.1090/jams/1039
- Published electronically: January 19, 2024
- HTML | PDF | Request permission
Abstract:
A well-known conjecture of Rasmussen states that for any knot $K$ in $S^{3}$, the rank of the reduced Khovanov homology of $K$ is greater than or equal to the rank of the reduced knot Floer homology of $K$. This rank inequality is supposed to arise as the result of a spectral sequence from Khovanov homology to knot Floer homology. Using an oriented cube of resolutions construction for a homology theory related to knot Floer homology, we prove this conjecture.References
- Akram Alishahi and Nathan Dowlin, The Lee spectral sequence, unknotting number, and the knight move conjecture, Topology Appl. 254 (2019), 29–38. MR 3894208, DOI 10.1016/j.topol.2018.11.020
- Akram S. Alishahi and Eaman Eftekhary, A refinement of sutured Floer homology, J. Symplectic Geom. 13 (2015), no. 3, 609–743. MR 3412088, DOI 10.4310/JSG.2015.v13.n3.a3
- John A. Baldwin, Adam Simon Levine, and Sucharit Sarkar, Khovanov homology and knot Floer homology for pointed links, J. Knot Theory Ramifications 26 (2017), no. 2, 1740004, 49. MR 3604486, DOI 10.1142/S0218216517400041
- John A. Baldwin and Steven Sivek, Khovanov homology detects the trefoils, Duke Math. J. 171 (2022), no. 4, 885–956. MR 4393789, DOI 10.1215/00127094-2021-0034
- John A. Baldwin, Steven Sivek, and Yi Xie, Khovanov homology detects the Hopf links, Math. Res. Lett. 26 (2019), no. 5, 1281–1290. MR 4049809, DOI 10.4310/MRL.2019.v26.n5.a2
- Joshua Batson and Cotton Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 (2015), no. 5, 801–841. MR 3332892, DOI 10.1215/00127094-2881374
- Anna Beliakova, Krzysztof K. Putyra, Louis-Hadrien Robert, and Emmanuel Wagner, A proof of Dunfield-Gukov-Rasmussen conjecture, Preprint, arXiv:2210.00878, 2022.
- Jonathan M. Bloom, Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17 (2010), no. 1, 1–10. MR 2592723, DOI 10.4310/MRL.2010.v17.n1.a1
- Nathan Dowlin, A family of $\mathfrak {sl}_n$-like invariants in knot Floer homology, Preprint, arXiv:1804.03165, 2018.
- Nathan Dowlin, Knot Floer homology and Khovanov-Rozansky homology for singular links, Algebr. Geom. Topol. 18 (2018), no. 7, 3839–3885. MR 3892233, DOI 10.2140/agt.2018.18.3839
- Nathan M. Dunfield, Sergei Gukov, and Jacob Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006), no. 2, 129–159. MR 2253002, DOI 10.1080/10586458.2006.10128956
- Paolo Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008), no. 5, 1151–1169. MR 2450204, DOI 10.1353/ajm.0.0016
- Mark C. Hughes, A note on Khovanov-Rozansky $sl_2$-homology and ordinary Khovanov homology, J. Knot Theory Ramifications 23 (2014), no. 12, 1450057, 25. MR 3298205, DOI 10.1142/S0218216514500576
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Mikhail Khovanov and Lev Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1–91. MR 2391017, DOI 10.4064/fm199-1-1
- P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97–208. MR 2805599, DOI 10.1007/s10240-010-0030-y
- Andrew Lobb and Raphael Zentner, On spectral sequences from Khovanov homology, Algebr. Geom. Topol. 20 (2020), no. 2, 531–564. MR 4092306, DOI 10.2140/agt.2020.20.531
- Ciprian Manolescu, An untwisted cube of resolutions for knot Floer homology, Quantum Topol. 5 (2014), no. 2, 185–223. MR 3229041, DOI 10.4171/QT/50
- Ciprian Manolescu, An introduction to knot Floer homology, Physics and mathematics of link homology, Contemp. Math., vol. 680, Amer. Math. Soc., Providence, RI, 2016, pp. 99–135. MR 3591644, DOI 10.1090/conm/680
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325–360. MR 1659228
- Yi Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577–608. MR 2357503, DOI 10.1007/s00222-007-0075-9
- Peter Ozsváth, András Stipsicz, and Zoltán Szabó, Floer homology and singular knots, J. Topol. 2 (2009), no. 2, 380–404. MR 2529302, DOI 10.1112/jtopol/jtp015
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. MR 2023281, DOI 10.2140/gt.2004.8.311
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, A cube of resolutions for knot Floer homology, J. Topol. 2 (2009), no. 4, 865–910. MR 2574747, DOI 10.1112/jtopol/jtp032
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
- Jacob Rasmussen, Knot polynomials and knot homologies, Geometry and topology of manifolds, Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence, RI, 2005, pp. 261–280. MR 2189938, DOI 10.1007/bf01579132
- Jacob Rasmussen, Some differentials on Khovanov-Rozansky homology, Geom. Topol. 19 (2015), no. 6, 3031–3104. MR 3447099, DOI 10.2140/gt.2015.19.3031
- Sucharit Sarkar, A note on sign conventions in link Floer homology, Quantum Topol. 2 (2011), no. 3, 217–239. MR 2812456, DOI 10.4171/QT/20
- Stephan M. Wehrli, Mutation invariance of Khovanov homology over $\Bbb F_2$, Quantum Topol. 1 (2010), no. 2, 111–128. MR 2657645, DOI 10.4171/QT/3
- Yi Xie, Earrings, sutures, and pointed links, Int. Math. Res. Not. IMRN 17 (2021), 13570–13601. MR 4307696, DOI 10.1093/imrn/rnaa101
Bibliographic Information
- Nathan Dowlin
- Affiliation: unaffiliated author, New York, NY
- MR Author ID: 1300433
- Received by editor(s): May 2, 2019
- Received by editor(s) in revised form: January 18, 2022, and December 21, 2022
- Published electronically: January 19, 2024
- Additional Notes: The author was partially supported by NSF grant DMS-1606421
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 951-1010
- MSC (2020): Primary 57K18
- DOI: https://doi.org/10.1090/jams/1039
- MathSciNet review: 4777638