Purity in chromatically localized algebraic $K$-theory
HTML articles powered by AMS MathViewer
- by Markus Land, Akhil Mathew, Lennart Meier and Georg Tamme;
- J. Amer. Math. Soc. 37 (2024), 1011-1040
- DOI: https://doi.org/10.1090/jams/1043
- Published electronically: February 1, 2024
- HTML | PDF | Request permission
Abstract:
We prove a purity property in telescopically localized algebraic $K$-theory of ring spectra: For $n\geq 1$, the $T(n)$-localization of $K(R)$ only depends on the $T(0)\oplus \dots \oplus T(n)$-localization of $R$. This complements a classical result of Waldhausen in rational $K$-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that $L_{T(n)}K(R)$ in fact only depends on the $T(n-1)\oplus T(n)$-localization of $R$, again for $n \geq 1$. As consequences, we deduce several vanishing results for telescopically localized $K$-theory, as well as an equivalence between $K(R)$ and $TC(\tau _{\geq 0} R)$ after $T(n)$-localization for $n\geq 2$.References
- Benjamin Antieau, Tobias Barthel, and David Gepner, On localization sequences in the algebraic $K$-theory of ring spectra, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 2, 459–487. MR 3760300, DOI 10.4171/JEMS/771
- Omar Antolín-Camarena and Tobias Barthel, A simple universal property of Thom ring spectra, J. Topol. 12 (2019), no. 1, 56–78. MR 3875978, DOI 10.1112/topo.12084
- John Frank Adams, Algebraic topology—a student’s guide, London Mathematical Society Lecture Note Series, No. 4, Cambridge University Press, London-New York, 1972. MR 445484, DOI 10.1017/CBO9780511662584
- Benjamin Antieau, David Gepner, and Jeremiah Heller, $K$-theoretic obstructions to bounded $t$-structures, Invent. Math. 216 (2019), no. 1, 241–300. MR 3935042, DOI 10.1007/s00222-018-00847-0
- G. Angelini-Knoll and J. D. Quigley, Chromatic complexitity of the algebraic $K$-theory of $y(n)$, arXiv:1908.09164, 2019.
- G. Angelini-Knoll and A. Salch, Commuting unbounded homotopy limits with Morava K-theory, arXiv:2003.03510, 2020.
- Christian Ausoni and John Rognes, Algebraic $K$-theory of topological $K$-theory, Acta Math. 188 (2002), no. 1, 1–39. MR 1947457, DOI 10.1007/BF02392794
- C. Ausoni and J. Rognes, The chromatic red-shift in algebraic K-theory, Enseign. Math. 54 (2008), no. 2, 9–11.
- Christian Ausoni and John Rognes, Algebraic $K$-theory of the first Morava $K$-theory, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1041–1079. MR 2928844, DOI 10.4171/JEMS/326
- Christian Ausoni, On the algebraic $K$-theory of the complex $K$-theory spectrum, Invent. Math. 180 (2010), no. 3, 611–668. MR 2609252, DOI 10.1007/s00222-010-0239-x
- Clark Barwick, On exact $\infty$-categories and the theorem of the heart, Compos. Math. 151 (2015), no. 11, 2160–2186. MR 3427577, DOI 10.1112/S0010437X15007447
- Bhargav Bhatt, Dustin Clausen, and Akhil Mathew, Remarks on $K (1)$-local $K$-theory, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 39, 16. MR 4110725, DOI 10.1007/s00029-020-00566-6
- Mark Behrens, Topological modular and automorphic forms, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, [2020] ©2020, pp. 221–261. MR 4197986
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), no. 2, 733–838. MR 3070515, DOI 10.2140/gt.2013.17.733
- R. Burklund, J. Hahn, I. Levy, and T.M. Schlank, $K$-theoretic counterexamples to Ravenel’s telescope conjecture, arXiv:2310.17459, 2023.
- M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic $K$-theory of spaces, Invent. Math. 111 (1993), no. 3, 465–539. MR 1202133, DOI 10.1007/BF01231296
- Tobias Barthel, Gijs Heuts, and Lennart Meier, A Whitehead theorem for periodic homotopy groups, Israel J. Math. 241 (2021), no. 1, 1–16. MR 4242143, DOI 10.1007/s11856-021-2086-4
- C. Barwick and T. Lawson, Regularity of structured ring spectra and localization in K-theory, arXiv:1402.6038, 2014.
- M. Bökstedt and I. Madsen, Topological cyclic homology of the integers, Astérisque 226 (1994), 7–8, 57–143. $K$-theory (Strasbourg, 1992). MR 1317117
- Andrew J. Blumberg and Michael A. Mandell, The localization sequence for the algebraic $K$-theory of topological $K$-theory, Acta Math. 200 (2008), no. 2, 155–179. MR 2413133, DOI 10.1007/s11511-008-0025-4
- S. Ben-Moshe, S. Carmeli, T. M Schlank, and L. Yanovski, Descent and Cyclotomic Redshift for Chromatically Localized Algebraic K-theory, arXiv:2309.07123, 2023.
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030, DOI 10.1007/s10240-019-00106-9
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496, DOI 10.24033/asens.1269
- A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001), no. 6, 2391–2426. MR 1814075, DOI 10.1090/S0002-9947-00-02649-0
- Bhargav Bhatt and Peter Scholze, Prisms and prismatic cohomology, Ann. of Math. (2) 196 (2022), no. 3, 1135–1275. MR 4502597, DOI 10.4007/annals.2022.196.3.5
- R. Burklund, T. M Schlank, and A. Yuan, The Chromatic Nullstellensatz, arXiv:2207.09929, 2022.
- Denis-Charles Cisinski, Descente par éclatements en $K$-théorie invariante par homotopie, Ann. of Math. (2) 177 (2013), no. 2, 425–448 (French, with English and French summaries). MR 3010804, DOI 10.4007/annals.2013.177.2.2
- Dustin Clausen and Akhil Mathew, Hyperdescent and étale $K$-theory, Invent. Math. 225 (2021), no. 3, 981–1076. MR 4296353, DOI 10.1007/s00222-021-01043-3
- Dustin Clausen, Akhil Mathew, and Matthew Morrow, $K$-theory and topological cyclic homology of henselian pairs, J. Amer. Math. Soc. 34 (2021), no. 2, 411–473. MR 4280864, DOI 10.1090/jams/961
- Dustin Clausen, Akhil Mathew, Niko Naumann, and Justin Noel, Descent in algebraic $K$-theory and a conjecture of Ausoni-Rognes, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 4, 1149–1200. MR 4071324, DOI 10.4171/JEMS/942
- D. Clausen, A. Mathew, N. Naumann, and J. Noel, Descent and vanishing in chromatic algebraic ${K}$-theory via group actions, to appear in Ann. Sci. Éc. Norm. Supér. (4) (2023), arXiv:2011.08233.
- Shachar Carmeli, Tomer M. Schlank, and Lior Yanovski, Ambidexterity in chromatic homotopy theory, Invent. Math. 228 (2022), no. 3, 1145–1254. MR 4419631, DOI 10.1007/s00222-022-01099-9
- Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill (eds.), Topological modular forms, Mathematical Surveys and Monographs, vol. 201, American Mathematical Society, Providence, RI, 2014. MR 3223024, DOI 10.1090/surv/201
- Bjørn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy, The local structure of algebraic K-theory, Algebra and Applications, vol. 18, Springer-Verlag London, Ltd., London, 2013. MR 3013261
- F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 325–337. MR 520509
- David Gepner, Moritz Groth, and Thomas Nikolaus, Universality of multiplicative infinite loop space machines, Algebr. Geom. Topol. 15 (2015), no. 6, 3107–3153. MR 3450758, DOI 10.2140/agt.2015.15.3107
- J. Hahn, On the Bousfield classes of ${H_\infty }$-ring spectra, arXiv:1612.04386, 2022.
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Drew Heard, Akhil Mathew, and Vesna Stojanoska, Picard groups of higher real $K$-theory spectra at height $p-1$, Compos. Math. 153 (2017), no. 9, 1820–1854. MR 3705278, DOI 10.1112/S0010437X17007242
- Lars Hesselholt and Thomas Nikolaus, Topological cyclic homology, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, [2020] ©2020, pp. 619–656. MR 4197995
- Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49. MR 1652975, DOI 10.2307/120991
- F. Hebestreit and W. Steimle, Stable moduli spaces of hermitian forms, arXiv:2103.13911, 2021.
- Jeremy Hahn and Dylan Wilson, Redshift and multiplication for truncated Brown-Peterson spectra, Ann. of Math. (2) 196 (2022), no. 3, 1277–1351. MR 4503327, DOI 10.4007/annals.2022.196.3.6
- Moritz Kerz, Florian Strunk, and Georg Tamme, Algebraic $K$-theory and descent for blow-ups, Invent. Math. 211 (2018), no. 2, 523–577. MR 3748313, DOI 10.1007/s00222-017-0752-2
- Nicholas J. Kuhn, Tate cohomology and periodic localization of polynomial functors, Invent. Math. 157 (2004), no. 2, 345–370. MR 2076926, DOI 10.1007/s00222-003-0354-z
- Nicholas J. Kuhn, A guide to telescopic functors, Homology Homotopy Appl. 10 (2008), no. 3, 291–319. MR 2475626, DOI 10.4310/HHA.2008.v10.n3.a13
- Wolfgang Lück, Holger Reich, John Rognes, and Marco Varisco, Algebraic K-theory of group rings and the cyclotomic trace map, Adv. Math. 304 (2017), 930–1020. MR 3558224, DOI 10.1016/j.aim.2016.09.004
- Markus Land and Georg Tamme, On the $K$-theory of pullbacks, Ann. of Math. (2) 190 (2019), no. 3, 877–930. MR 4024564, DOI 10.4007/annals.2019.190.3.4
- M. Land and G. Tamme, On the $K$-theory of pushouts, arXiv:2304.12812, 2023.
- Wolfgang Lück, Assembly maps, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, [2020] ©2020, pp. 851–890. MR 4198000
- J. Lurie, Lectures on chromatic homotopy theory, https://www.math.ias.edu/~lurie/252x.html, 2010.
- J. Lurie, Higher algebra, https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017.
- Mark Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), no. 3, 549–559. MR 544245
- Mark Mahowald, $b\textrm {o}$-resolutions, Pacific J. Math. 92 (1981), no. 2, 365–383. MR 618072, DOI 10.2140/pjm.1981.92.365
- Akhil Mathew, On $K(1)$-local TR, Compos. Math. 157 (2021), no. 5, 1079–1119. MR 4256236, DOI 10.1112/S0010437X21007144
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, NJ, 1963. Based on lecture notes by M. Spivak and R. Wells. MR 163331, DOI 10.1515/9781400881802
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287–312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Haynes Miller, Finite localizations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383–389. Papers in honor of José Adem (Spanish). MR 1317588
- S. A. Mitchell, The Morava $K$-theory of algebraic $K$-theory spectra, $K$-Theory 3 (1990), no. 6, 607–626. MR 1071898, DOI 10.1007/BF01054453
- Akhil Mathew and Lennart Meier, Affineness and chromatic homotopy theory, J. Topol. 8 (2015), no. 2, 476–528. MR 3356769, DOI 10.1112/jtopol/jtv005
- Mark Mahowald, Douglas Ravenel, and Paul Shick, The triple loop space approach to the telescope conjecture, Homotopy methods in algebraic topology (Boulder, CO, 1999) Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 217–284. MR 1831355, DOI 10.1090/conm/271/04358
- Mark Mahowald and Hal Sadofsky, $v_n$ telescopes and the Adams spectral sequence, Duke Math. J. 78 (1995), no. 1, 101–129. MR 1328754, DOI 10.1215/S0012-7094-95-07806-5
- Amnon Neeman, The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736, DOI 10.24033/asens.1659
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Amnon Neeman, A counterexample to vanishing conjectures for negative $K$-theory, Invent. Math. 225 (2021), no. 2, 427–452. MR 4285139, DOI 10.1007/s00222-021-01034-4
- Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731, DOI 10.4310/ACTA.2018.v221.n2.a1
- I. Patchkoria and P. Pstra̧gowski, Adams spectral sequences and Franke’s algebraicity conjecture, arXiv:2110.03669, 2023.
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 85–147. MR 338129
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- John Rognes, Algebraic $K$-theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), no. 3, 287–326. MR 1663391, DOI 10.1016/S0022-4049(97)00156-4
- John Rognes, Topological cyclic homology of the integers at two, J. Pure Appl. Algebra 134 (1999), no. 3, 219–286. MR 1663390, DOI 10.1016/S0022-4049(97)00155-2
- Holger Reich and Marco Varisco, Algebraic $K$-theory, assembly maps, controlled algebra, and trace methods, Space—time—matter, De Gruyter, Berlin, 2018, pp. 1–50. MR 3792301
- A. Suslin, On the $K$-theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 714090, DOI 10.1007/BF01394024
- Georg Tamme, Excision in algebraic $K$-theory revisited, Compos. Math. 154 (2018), no. 9, 1801–1814. MR 3867284, DOI 10.1112/s0010437x18007236
- R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102, DOI 10.24033/asens.1495
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Vladimir Voevodsky, Motivic cohomology with $\textbf {Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104. MR 2031199, DOI 10.1007/s10240-003-0010-6
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI 10.4007/annals.2011.174.1.11
- Friedhelm Waldhausen, Algebraic $K$-theory of topological spaces. I, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 35–60. MR 520492
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, localization, and the chromatic filtration of stable homotopy, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 173–195. MR 764579, DOI 10.1007/BFb0075567
- C. A. Weibel, Mayer-Vietoris sequences and module structures on $NK_\ast$, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 466–493. MR 618317, DOI 10.1007/BFb0089534
- Charles A. Weibel, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic $K$-theory. MR 3076731, DOI 10.1090/gsm/145
- Friedhelm Waldhausen, Bjørn Jahren, and John Rognes, Spaces of PL manifolds and categories of simple maps, Annals of Mathematics Studies, vol. 186, Princeton University Press, Princeton, NJ, 2013. MR 3202834, DOI 10.1515/9781400846528
- A. Yuan, Examples of chromatic redshift in algebraic $K$-theory, to appear in J. Eur. Math. Soc. (2021), arXiv:2111.10837.
Bibliographic Information
- Markus Land
- Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
- MR Author ID: 1115301
- Email: markus.land@math.lmu.de
- Akhil Mathew
- Affiliation: Department of Mathematics, University of Chicago, 5734 S University Ave, Chicago, Illinois 60637
- MR Author ID: 891016
- ORCID: 0000-0002-3899-2872
- Email: amathew@math.uchicago.edu
- Lennart Meier
- Affiliation: Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
- MR Author ID: 955940
- Email: f.l.m.meier@uu.nl
- Georg Tamme
- Affiliation: Institut für Mathematik, Fachbereich 08, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- MR Author ID: 986895
- ORCID: 0000-0003-4475-3306
- Email: georg.tamme@uni-mainz.de
- Received by editor(s): March 24, 2022
- Received by editor(s) in revised form: April 11, 2023
- Published electronically: February 1, 2024
- Additional Notes: The first and fourth authors were partially supported by the CRC/SFB 1085 Higher Invariants (Universität Regensburg) funded by the DFG. The first author was further supported by the DFG through a research fellowship and by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92) and the Centre for Geometry and Topology (DNRF151). Results incorporated in this paper have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 888676. This work was done while the second author was supported by a Clay Research Fellowship and by the National Science Foundation under Grant No. 2152311. The third author was supported by the NWO through VI.Vidi.193.111. The fourth author was further partially supported by the DFG through TRR 326 (Project-ID 444845124).
- © Copyright 2024 American Mathematical Society
- Journal: J. Amer. Math. Soc. 37 (2024), 1011-1040
- MSC (2020): Primary 19D55, 55P43
- DOI: https://doi.org/10.1090/jams/1043
- MathSciNet review: 4777639