The unbounded denominators conjecture
HTML articles powered by AMS MathViewer
- by Frank Calegari, Vesselin Dimitrov and Yunqing Tang;
- J. Amer. Math. Soc. 38 (2025), 627-702
- DOI: https://doi.org/10.1090/jams/1053
- Published electronically: February 6, 2025
- HTML | PDF | Request permission
Abstract:
We prove the unbounded denominators conjecture in the theory of noncongruence modular forms for finite index subgroups of $\operatorname {SL}_2(\mathbf {Z})$. Our result includes also Masonâs generalization of the original conjecture to the setting of vector-valued modular forms, thereby supplying a new path to the congruence property in rational conformal field theory. The proof involves a new arithmetic holonomicity bound of a potential-theoretic flavor, together with Nevanlinna second main theorem, the congruence subgroup property of $\operatorname {SL}_2(\mathbf {Z}[1/p])$, and a close description of the Fuchsian uniformization $D(0,1)/\Gamma _N$ of the Riemann surface $\mathbf {C} \smallsetminus \mu _N$.References
- Greg Anderson and Greg Moore, Rationality in conformal field theory, Comm. Math. Phys. 117 (1988), no. 3, 441â450. MR 953832, DOI 10.1007/BF01223375
- Yvette Amice, Les nombres $p$-adiques, Collection SUP: âLe MathĂ©maticienâ, vol. 14, Presses Universitaires de France, Paris, 1975 (French). PrĂ©face de Ch. Pisot. MR 447195
- Yves André, $G$-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016, DOI 10.1007/978-3-663-14108-2
- Yves AndrĂ©, Sur la conjecture des $p$-courbures de Grothendieck-Katz et un problĂšme de Dwork, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 55â112 (French, with French summary). MR 2023288
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968) Proc. Sympos. Pure Math., Vol. XIX, Amer. Math. Soc., Providence, RI, 1971, pp. 1â25. MR 337781
- G. D. Anderson, T. Sugawa, M. K. Vamanamurthy, and M. Vuorinen, Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral, Math. Z. 266 (2010), no. 1, 181â191. MR 2670678, DOI 10.1007/s00209-009-0560-5
- Peter Bantay, Frobenius-Schur indicators, the Klein-bottle amplitude, and the principle of orbifold covariance, Phys. Lett. B 488 (2000), no. 2, 207â210. MR 1782167, DOI 10.1016/S0370-2693(00)00802-9
- P. Bantay, Permutation orbifolds, Nuclear Phys. B 633 (2002), no. 3, 365â378. MR 1910268, DOI 10.1016/S0550-3213(02)00198-0
- P. Bantay, The kernel of the modular representation and the Galois action in RCFT, Comm. Math. Phys. 233 (2003), no. 3, 423â438. MR 1962117, DOI 10.1007/s00220-002-0760-x
- Jean-Benoßt Bost and François Charles, Quasi-projective and formal-analytic arithmetic surfaces, arXiv:2206.14242, 2022
- Jean-BenoĂźt Bost and Antoine Chambert-Loir, Analytic curves in algebraic varieties over number fields, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, BirkhĂ€user Boston, Boston, MA, 2009, pp. 69â124. MR 2641171, DOI 10.1007/978-0-8176-4745-2_{3}
- Gabriel Berger, Hecke operators on noncongruence subgroups, C. R. Acad. Sci. Paris SĂ©r. I Math. 319 (1994), no. 9, 915â919 (English, with English and French summaries). MR 1302789
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Peter Bantay and Terry Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theory Phys. 1 (2007), no. 4, 651â680. MR 2412268, DOI 10.4310/CNTP.2007.v1.n4.a2
- Yuri Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), no. 3, 465â476. MR 1470340, DOI 10.1215/S0012-7094-97-08921-3
- Bryan Birch, Noncongruence subgroups, covers and drawings, The Grothendieck theory of dessins dâenfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 25â46. MR 1305392
- Djamel Benbourenane and Risto Korhonen, On the growth of the logarithmic derivative, Comput. Methods Funct. Theory 1 (2001), no. 2, [On table of contents: 2002], 301â310. MR 1941127, DOI 10.1007/BF03320992
- Ămile Borel, Sur une application dâun thĂ©orĂšme de M. Hadamard, Bull. Sci. Math. 18 (1894), 22â25.
- Richard E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405â444. MR 1172696, DOI 10.1007/BF01232032
- J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. Ăcole Norm. Sup. (4) 32 (1999), no. 2, 241â312 (English, with English and French summaries). MR 1681810, DOI 10.1016/S0012-9593(99)80015-9
- Jean-BenoĂźt Bost, Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 371â418. MR 2023294
- Jean-BenoĂźt Bost, Algebraization, transcendence, and $D$-group schemes, Notre Dame J. Form. Log. 54 (2013), no. 3-4, 377â434. MR 3091663, DOI 10.1215/00294527-2143961
- Jean-Benoßt Bost, Theta invariants of Euclidean lattices and infinite-dimensional Hermitian vector bundles over arithmetic curves, Progress in Mathematics, vol. 334, BirkhÀuser/Springer, Cham, [2020] ©2020. MR 4180991, DOI 10.1007/978-3-030-44329-0
- C. Caratheodory, Theory of functions of a complex variable. Vol. 2, Chelsea Publishing Co., New York, 1954. Translated by F. Steinhardt. MR 64861
- Frank Calegari and Matthew Emerton, Mod-$p$ cohomology growth in $p$-adic analytic towers of 3-manifolds, Groups Geom. Dyn. 5 (2011), no. 2, 355â366. MR 2782177, DOI 10.4171/GGD/131
- Frank Calegari and Matthew Emerton, Completed cohomologyâa survey, Non-abelian fundamental groups and Iwasawa theory, London Math. Soc. Lecture Note Ser., vol. 393, Cambridge Univ. Press, Cambridge, 2012, pp. 239â257. MR 2905536
- Frank Calegari and Matthew Emerton, Homological stability for completed homology, Math. Ann. 364 (2016), no. 3-4, 1025â1041. MR 3466858, DOI 10.1007/s00208-015-1235-7
- William Yun Chen, Moduli interpretations for noncongruence modular curves, Math. Ann. 371 (2018), no. 1-2, 41â126. MR 3788845, DOI 10.1007/s00208-017-1575-6
- Antoine Chambert-Loir, ThĂ©orĂšmes dâalgĂ©bricitĂ© en gĂ©omĂ©trie diophantienne (dâaprĂšs J.-B. Bost, Y. AndrĂ©, D. & G. Chudnovsky), AstĂ©risque 282 (2002), Exp. No. 886, viii, 175â209 (French, with French summary). SĂ©minaire Bourbaki, Vol. 2000/2001. MR 1975179
- Frank Calegari and Akshay Venkatesh, A torsion Jacquet-Langlands correspondence, Astérisque 409 (2019), x+226 (English, with English and French summaries). MR 3961523, DOI 10.24033/ast
- William Cherry and Zhuan Ye, Nevanlinnaâs theory of value distribution, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. The second main theorem and its error terms. MR 1831783, DOI 10.1007/978-3-662-12590-8
- Henri Darmon, Fred Diamond, and Richard Taylor, Fermatâs last theorem, Elliptic curves, modular forms & Fermatâs last theorem (Hong Kong, 1993) Int. Press, Cambridge, MA, 1997, pp. 2â140. MR 1605752
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Ătudes Sci. Publ. Math. 43 (1974), 273â307 (French). MR 340258, DOI 10.1007/BF02684373
- Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan, An introduction to $G$-functions, Annals of Mathematics Studies, vol. 133, Princeton University Press, Princeton, NJ, 1994. MR 1274045
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1â56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121â2166. MR 3435813, DOI 10.2140/ant.2015.9.2121
- Chongying Dong and Li Ren, Congruence property in orbifold theory, Proc. Amer. Math. Soc. 146 (2018), no. 2, 497â506. MR 3731686, DOI 10.1090/proc/13748
- Henri Paul de Saint-Gervais, Uniformization of Riemann surfaces, Heritage of European Mathematics, European Mathematical Society (EMS), ZĂŒrich, 2016. Revisiting a hundred-year-old theorem; Translated from the 2010 French original [ MR2768303] by Robert G. Burns; The name of Henri Paul de Saint-Gervais covers a group composed of fifteen mathematicians: AurĂ©lien Alvarez, Christophe Bavard, François BĂ©guin, Nicolas Bergeron, Maxime Bourrigan, Bertrand Deroin, Sorin Dumitrescu, Charles Frances, Ătienne Ghys, Antonin Guilloux, Frank Loray, Patrick Popescu-Pampu, Pierre Py, Bruno SĂ©vennec and Jean-Claude Sikorav. MR 3494804, DOI 10.4171/145
- Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456, DOI 10.1007/BFb0093404
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Wolfgang Eholzer, On the classification of modular fusion algebras, Comm. Math. Phys. 172 (1995), no. 3, 623â659. MR 1354262, DOI 10.1007/BF02101810
- Andrew Fiori and Cameron Franc, The unbounded denominators conjecture for the noncongruence subgroups of index 7, J. Number Theory 240 (2022), 611â640. MR 4458253, DOI 10.1016/j.jnt.2021.11.014
- Cameron Franc, Terry Gannon, and Geoffrey Mason, On unbounded denominators and hypergeometric series, J. Number Theory 192 (2018), 197â220. MR 3841552, DOI 10.1016/j.jnt.2018.04.009
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Cameron Franc and Geoffrey Mason, Fourier coefficients of vector-valued modular forms of dimension 2, Canad. Math. Bull. 57 (2014), no. 3, 485â494. MR 3239110, DOI 10.4153/CMB-2014-007-3
- Cameron Franc and Geoffrey Mason, Hypergeometric series, modular linear differential equations and vector-valued modular forms, Ramanujan J. 41 (2016), no. 1-3, 233â267. MR 3574630, DOI 10.1007/s11139-014-9644-x
- Cameron Franc and Geoffrey Mason, Three-dimensional imprimitive representations of the modular group and their associated modular forms, J. Number Theory 160 (2016), 186â214. MR 3425204, DOI 10.1016/j.jnt.2015.08.013
- JĂŒrgen Fuchs and Christoph Schweigert, Full logarithmic conformal field theoryâan attempt at a status report, Fortschr. Phys. 67 (2019), no. 8-9, Special issue: Proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in M-Theory, 1910018, 12. MR 4016024, DOI 10.1002/prop.201910018
- Terry Gannon, Moonshine beyond the Monster, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006. The bridge connecting algebra, modular forms and physics. MR 2257727, DOI 10.1017/CBO9780511535116
- Terry Gannon, The theory of vector-valued modular forms for the modular group, Conformal Field Theory, Automorphic Forms and Related Topics, Springer-Verlag, 2014, pp. 247â286.
- A. A. GolâČdberg and V. A. GrinĆĄteÄn, The logarithmic derivative of a meromorphic function, Mat. Zametki 19 (1976), no. 4, 525â530 (Russian). MR 402047
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, RI, 1969. MR 247039, DOI 10.1090/mmono/026
- Richard Gottesman, The arithmetic of vector-valued modular forms on $\Gamma _0(2)$, Int. J. Number Theory 16 (2020), no. 2, 241â289. MR 4077422, DOI 10.1142/S1793042120500141
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 164038
- Joachim A. Hempel, On the uniformization of the $n$-punctured sphere, Bull. London Math. Soc. 20 (1988), no. 2, 97â115. MR 924235, DOI 10.1112/blms/20.2.97
- A. Hinkkanen, A sharp form of Nevanlinnaâs second fundamental theorem, Invent. Math. 108 (1992), no. 3, 549â574. MR 1163238, DOI 10.1007/BF02100617
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 224703, DOI 10.1007/978-3-642-64981-3
- Takashi Ichikawa, On TeichmĂŒller modular forms, Math. Ann. 299 (1994), no. 4, 731â740. MR 1286895, DOI 10.1007/BF01459809
- Yasutaka Ihara, Horizontal divisors on arithmetic surfaces associated with BelyÄ uniformizations, The Grothendieck theory of dessins dâenfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 245â254. MR 1305400
- Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Ătudes Sci. Publ. Math. 39 (1970), 175â232. MR 291177, DOI 10.1007/BF02684688
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin-New York, 1973, pp. 69â190. MR 447119
- Felix Klein and Robert Fricke, Lectures on the theory of elliptic modular functions. Vol. 1, CTM. Classical Topics in Mathematics, vol. 1, Higher Education Press, Beijing, 2017. Translated from the German original [ MR0247996] by Arthur M. DuPre. MR 3838340
- Siegfried Kirsch, Transfinite diameter, Chebyshev constant and capacity, Handbook of complex analysis: geometric function theory. Vol. 2, Elsevier Sci. B. V., Amsterdam, 2005, pp. 243â308. MR 2121861, DOI 10.1016/S1874-5709(05)80010-1
- Chris A. Kurth and Ling Long, On modular forms for some noncongruence subgroups of $\textrm {SL}_2(\Bbb Z)$, J. Number Theory 128 (2008), no. 7, 1989â2009. MR 2423745, DOI 10.1016/j.jnt.2007.10.007
- Chris Kurth and Ling Long, On modular forms for some noncongruence subgroups of $\textrm {SL}_2(\Bbb Z)$. II, Bull. Lond. Math. Soc. 41 (2009), no. 4, 589â598. MR 2521354, DOI 10.1112/blms/bdp061
- Marvin Knopp and Geoffrey Mason, Generalized modular forms, J. Number Theory 99 (2003), no. 1, 1â28. MR 1957241, DOI 10.1016/S0022-314X(02)00065-3
- Marvin Knopp and Geoffrey Mason, On vector-valued modular forms and their Fourier coefficients, Acta Arith. 110 (2003), no. 2, 117â124. MR 2008079, DOI 10.4064/aa110-2-2
- Winfried Kohnen and Geoffrey Mason, On generalized modular forms and their applications, Nagoya Math. J. 192 (2008), 119â136. MR 2477614, DOI 10.1017/S0027763000026003
- Marvin Knopp and Geoffrey Mason, Parabolic generalized modular forms and their characters, Int. J. Number Theory 5 (2009), no. 5, 845â857. MR 2553511, DOI 10.1142/S1793042109002419
- V. V. Kornyak, Discrete relations on abstract simplicial complexes, Programmirovanie 2 (2006), 32â39 (Russian, with Russian summary); English transl., Program. Comput. Software 32 (2006), no. 2, 84â89. MR 2273205, DOI 10.1134/S0361768806020058
- Winfried Kohnen and Geoffrey Mason, On the canonical decomposition of generalized modular functions, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1125â1132. MR 2869098, DOI 10.1090/S0002-9939-2011-10894-3
- Daniela Kraus and Oliver Roth, Sharp lower bounds for the hyperbolic metric of the complement of a closed subset of the unit circle and theorems of Schwarz-Pick-, Schottky- and Landau-type for analytic functions, Constr. Approx. 43 (2016), no. 1, 47â69. MR 3439233, DOI 10.1007/s00365-015-9313-3
- Daniela Kraus, Oliver Roth, and Toshiyuki Sugawa, Metrics with conical singularities on the sphere and sharp extensions of the theorems of Landau and Schottky, Math. Z. 267 (2011), no. 3-4, 851â868. MR 2776061, DOI 10.1007/s00209-009-0649-x
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Ătudes Sci. Publ. Math. 26 (1965), 389â603 (French). MR 209286
- Wen-Ching Winnie Li and Ling Long, Fourier coefficients of noncongruence cuspforms, Bull. Lond. Math. Soc. 44 (2012), no. 3, 591â598. MR 2967004, DOI 10.1112/blms/bdr122
- Ling Long, Finite index subgroups of the modular group and their modular forms, Modular forms and string duality, Fields Inst. Commun., vol. 54, Amer. Math. Soc., Providence, RI, 2008, pp. 83â102. MR 2454321, DOI 10.1090/fic/054/04
- Christopher Marks, Fourier coefficients of three-dimensional vector-valued modular forms, Commun. Number Theory Phys. 9 (2015), no. 2, 387â412. MR 3361298, DOI 10.4310/CNTP.2015.v9.n2.a5
- Geoffrey Mason, On the Fourier coefficients of 2-dimensional vector-valued modular forms, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1921â1930. MR 2888179, DOI 10.1090/S0002-9939-2011-11098-0
- J. Mennicke, On Iharaâs modular group, Invent. Math. 4 (1967), 202â228. MR 225894, DOI 10.1007/BF01425756
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 279280, DOI 10.1007/978-3-642-85590-0
- Siu-Hung Ng and Peter Schauenburg, Congruence subgroups and generalized Frobenius-Schur indicators, Comm. Math. Phys. 300 (2010), no. 1, 1â46. MR 2725181, DOI 10.1007/s00220-010-1096-6
- Federico Pellarin, From the Carlitz exponential to Drinfeld modular forms, Arithmetic and geometry over local fieldsâVIASM 2018, Lecture Notes in Math., vol. 2275, Springer, Cham, [2021] ©2021, pp. 93â177. MR 4238488
- Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 503â514. MR 804706
- Min Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2021] ©2021. Second edition [of 1850002]. MR 4265173, DOI 10.1142/12188
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, RI, 1965, pp. 1â15. MR 182610
- Jean-Pierre Serre, Le problĂšme des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489â527 (French). MR 272790, DOI 10.2307/1970630
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Goro Shimura, Sur les intĂ©grales attachĂ©es aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291â311 (French). MR 120372, DOI 10.2969/jmsj/01140291
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; KanĂŽ Memorial Lectures, 1. MR 1291394
- Peter Stiller, Special values of Dirichlet series, monodromy, and the periods of automorphic forms, Mem. Amer. Math. Soc. 49 (1984), no. 299, iv+116. MR 743544, DOI 10.1090/memo/0299
- Richard G. Swan, The $p$-period of a finite group, Illinois J. Math. 4 (1960), 341â346. MR 122856
- Yorck SommerhÀuser and Yongchang Zhu, Hopf algebras and congruence subgroups, Mem. Amer. Math. Soc. 219 (2012), no. 1028, vi+134. MR 2985696, DOI 10.1090/S0065-9266-2012-00649-6
- Terence Tao, Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. MR 2906465, DOI 10.1090/gsm/132
- J. G. Thompson, Hecke operators and noncongruence subgroups, Group theory (Singapore, 1987) de Gruyter, Berlin, 1989, pp. 215â224. Including a letter from J.-P. Serre. MR 981844
- Masatsugu Tsuji, Theory of Fuchsian groups, Jpn. J. Math. 21 (1951), 1â27 (1952). MR 54718, DOI 10.4099/jjm1924.21.0_{1}
- Klaus Wohlfahrt, An extension of F. Kleinâs level concept, Illinois J. Math. 8 (1964), 529â535. MR 167533
- Feng Xu, Some computations in the cyclic permutations of completely rational nets, Comm. Math. Phys. 267 (2006), no. 3, 757â782. MR 2249790, DOI 10.1007/s00220-006-0042-0
- Don Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 1â103. MR 2409678, DOI 10.1007/978-3-540-74119-0_{1}
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237â302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Frank Calegari
- Affiliation: Department of Mathematics, The University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637
- MR Author ID: 678536
- Email: fcale@math.uchicago.edu
- Vesselin Dimitrov
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 1419212
- ORCID: 0000-0002-1515-8981
- Email: dimitrov@caltech.edu
- Yunqing Tang
- Affiliation: Department of Mathematics, University of California, Berkeley, Evans Hall, Berkeley, California 94720
- MR Author ID: 1066847
- Email: yungqing.tang@berkeley.edu
- Received by editor(s): October 12, 2021
- Received by editor(s) in revised form: March 18, 2022, May 1, 2023, and September 19, 2024
- Published electronically: February 6, 2025
- Additional Notes: The first author was supported in part by NSF Grant DMS-2001097. The third author was supported in part by NSF grant DMS-2231958 and a Sloan Research Fellowship. The second author was supported by NSF grant DMS-1926686 while at the Institute for Advanced Study from September 2022 to June 2023.
- © Copyright 2025 American Mathematical Society
- Journal: J. Amer. Math. Soc. 38 (2025), 627-702
- MSC (2020): Primary 11F11
- DOI: https://doi.org/10.1090/jams/1053