Stable degenerations of singularities
HTML articles powered by AMS MathViewer
- by Chenyang Xu and Ziquan Zhuang;
- J. Amer. Math. Soc. 38 (2025), 585-626
- DOI: https://doi.org/10.1090/jams/1055
- Published electronically: January 29, 2025
- HTML | PDF | Request permission
Abstract:
For any Kawamata log terminal (klt) singularity and any minimizer of its normalized volume function, we prove that the associated graded ring is always finitely generated, as conjectured by Chi Li. As a consequence, we complete the last step of establishing the Stable Degeneration Conjecture proposed by Chi Li and the first named author for an arbitrary klt singularity.References
- F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 220–239; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 214–233. MR 1993751
- Hamid Abban and Ziquan Zhuang, K-stability of Fano varieties via admissible flags, Forum Math. Pi 10 (2022), Paper No. e15, 43. MR 4448177, DOI 10.1017/fmp.2022.11
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Harold Blum, Yuchen Liu, and Lu Qi, Convexity of multiplicities of filtrations on local rings, Compos. Math. 160 (2024), no. 4, 878–914. MR 4716588, DOI 10.1112/S0010437X23007972
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- Harold Blum, Yuchen Liu, and Chenyang Xu, Openness of K-semistability for Fano varieties, Duke Math. J. 171 (2022), no. 13, 2753–2797. MR 4505846, DOI 10.1215/00127094-2022-0054
- Harold Blum, Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, The existence of the Kähler-Ricci soliton degeneration, Forum Math. Pi 11 (2023), Paper No. e9, 28. MR 4558985, DOI 10.1017/fmp.2023.5
- Steven Dale Cutkosky, Multiplicities associated to graded families of ideals, Algebra Number Theory 7 (2013), no. 9, 2059–2083. MR 3152008, DOI 10.2140/ant.2013.7.2059
- Tommaso de Fernex, János Kollár, and Chenyang Xu, The dual complex of singularities, Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Math. Soc. Japan, Tokyo, 2017, pp. 103–129. MR 3791210, DOI 10.2969/aspm/07410103
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014), no. 1, 63–106. MR 3261011, DOI 10.1007/s11511-014-0116-3
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017), no. 2, 327–371. MR 3707646, DOI 10.4310/jdg/1506650422
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690, DOI 10.1353/ajm.2003.0010
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Kai Huang, K-stability of log Fano cone singularities, Ph.D. Thesis, Massachusetts Institute of Technology (2022).
- Shihoko Ishii, Extremal functions and prime blow-ups, Comm. Algebra 32 (2004), no. 3, 819–827. MR 2063783, DOI 10.1081/AGB-120027952
- Chen Jiang, Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár, Families of varieties of general type, Cambridge Tracts in Mathematics, vol. 231, Cambridge University Press, Cambridge, 2023. With the collaboration of Klaus Altmann and Sándor J. Kovács. MR 4566297, DOI 10.1017/9781009346115
- János Kollár, et al., Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).
- Chi Li, K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), no. 16, 3147–3218. MR 3715806, DOI 10.1215/00127094-2017-0026
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Chi Li, Notes on weighted Kähler-Ricci solitons and application to Ricci-flat Kähler cone metrics, arXiv:2107.02088 (2021).
- Chi Li and Yuchen Liu, Kähler-Einstein metrics and volume minimization, Adv. Math. 341 (2019), 440–492. MR 3872852, DOI 10.1016/j.aim.2018.10.038
- Chi Li, Yuchen Liu, and Chenyang Xu, A guided tour to normalized volume, Geometric analysis—in honor of Gang Tian’s 60th birthday, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, [2020] ©2020, pp. 167–219. MR 4181002, DOI 10.1007/978-3-030-34953-0_{1}0
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI 10.24033/asens.2109
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- Yuchen Liu, Chenyang Xu, and Ziquan Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. (2) 196 (2022), no. 2, 507–566. MR 4445441, DOI 10.4007/annals.2022.196.2.2
- Dario Martelli, James Sparks, and Shing-Tung Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611–673. MR 2399609, DOI 10.1007/s00220-008-0479-4
- Yuji Odaka and Chenyang Xu, Log-canonical models of singular pairs and its applications, Math. Res. Lett. 19 (2012), no. 2, 325–334. MR 2955764, DOI 10.4310/MRL.2012.v19.n2.a5
- Rémi Reboulet, Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy, J. Reine Angew. Math. 793 (2022), 59–103. MR 4513163, DOI 10.1515/crelle-2022-0059
- V. V. Shokurov, A supplement to: “Three-dimensional log perestroikas” [Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203; MR1162635 (93j:14012)], Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 6, 141–175 (Russian); English transl., Russian Acad. Sci. Izv. Math. 43 (1994), no. 3, 527–558. MR 1256571, DOI 10.1070/IM1994v043n03ABEH001579
- Chenyang Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014), no. 3, 409–414. MR 3187625, DOI 10.1112/S0010437X13007562
- Chenyang Xu, Interaction between singularity theory and the minimal model program, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 807–830. MR 3966790
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Ch. Xu, Towards finite generation of higher rational rank valuations, Mat. Sb. 212 (2021), no. 3, 157–174 (Russian, with Russian summary); English transl., Sb. Math. 212 (2021), no. 3, 416–432. MR 4223976, DOI 10.4213/sm9448
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. MR 4325260, DOI 10.4310/CJM.2021.v9.n1.a2
Bibliographic Information
- Chenyang Xu
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544; \normalfont and Beijing International Center for Mathematical Research, Beijing 100871, People’s Republic of China
- MR Author ID: 788735
- ORCID: 0000-0001-6627-3069
- Email: chenyang@princeton.edu, cyxu@math.pku.edu.cn
- Ziquan Zhuang
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- MR Author ID: 1257439
- ORCID: 0000-0002-5466-5206
- Email: zzhuang@jhu.edu
- Received by editor(s): May 26, 2022
- Received by editor(s) in revised form: March 25, 2024
- Published electronically: January 29, 2025
- Additional Notes: The first author was partially supported by NSF Grant DMS-2201349, DMS-2139613 and DMS-2153115. The second author was partially supported by NSF Grants DMS-2240926, DMS-2234736, a Clay research fellowship, as well as a Sloan fellowship.
- © Copyright 2025 American Mathematical Society
- Journal: J. Amer. Math. Soc. 38 (2025), 585-626
- MSC (2020): Primary 14J17, 14B05, 14E30, 13A18, 32Q26
- DOI: https://doi.org/10.1090/jams/1055