Average energy dissipation rates of explicit exponential Runge-Kutta methods for gradient flow problems
HTML articles powered by AMS MathViewer
- by Hong-lin Liao and Xuping Wang;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4015
- Published electronically: September 27, 2024
- HTML | PDF | Request permission
Abstract:
We propose a unified theoretical framework to examine the energy dissipation properties at all stages of explicit exponential Runge-Kutta (EERK) methods for gradient flow problems. The main part of the novel framework is to construct the differential form of EERK method by using the difference coefficients of method and the so-called discrete orthogonal convolution kernels. As the main result, we prove that an EERK method can preserve the original energy dissipation law unconditionally if the associated differentiation matrix is positive semi-definite. A simple indicator, namely average dissipation rate, is also introduced for these multi-stage methods to evaluate the overall energy dissipation rate of an EERK method such that one can choose proper parameters in some parameterized EERK methods or compare different kinds of EERK methods. Some existing EERK methods in the literature are evaluated from the perspective of preserving the original energy dissipation law and the energy dissipation rate. Some numerical examples are also included to support our theory.References
- Begoña Cano and María Jesús Moreta, Solving reaction-diffusion problems with explicit Runge-Kutta exponential methods without order reduction, ESAIM Math. Model. Numer. Anal. 58 (2024), no. 3, 1053–1085. MR 4760000, DOI 10.1051/m2an/2024011
- E. Celledoni, A. Marthinsen, and B. Owren, Commutator-free Lie group methods, Future Gener. Comp. Sys. 19 (2003), 341–352.
- S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), no. 2, 430–455. MR 1894772, DOI 10.1006/jcph.2002.6995
- Giacomo Dimarco and Lorenzo Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations, SIAM J. Numer. Anal. 49 (2011), no. 5, 2057–2077. MR 2861709, DOI 10.1137/100811052
- Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal. 57 (2019), no. 2, 875–898. MR 3945242, DOI 10.1137/18M118236X
- Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev. 63 (2021), no. 2, 317–359. MR 4253790, DOI 10.1137/19M1243750
- Nicholas Hale and Lloyd N. Trefethen, Chebfun and numerical quadrature, Sci. China Math. 55 (2012), no. 9, 1749–1760. MR 2960859, DOI 10.1007/s11425-012-4474-z
- M. Fasi, S. Gaudreault, K. Lund, and M. Schweitzer, Challenges in computing matrix functions, arXiv:2401.16132v1, 2024.
- Zhaohui Fu and Jiang Yang, Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models, J. Comput. Phys. 454 (2022), Paper No. 110943, 11. MR 4369169, DOI 10.1016/j.jcp.2022.110943
- Z. Fu, J. Shen, and J. Yang, Higher-order energy-decreasing exponential time differencing Runge-Kutta methods for gradient flows, arXiv:2402.15142v1, 2024.
- Nicholas J. Higham, Functions of matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and computation. MR 2396439, DOI 10.1137/1.9780898717778
- Marlis Hochbruck, Christian Lubich, and Hubert Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998), no. 5, 1552–1574. MR 1618808, DOI 10.1137/S1064827595295337
- Marlis Hochbruck and Alexander Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (2005), no. 3, 1069–1090. MR 2177796, DOI 10.1137/040611434
- Marlis Hochbruck and Alexander Ostermann, Exponential integrators, Acta Numer. 19 (2010), 209–286. MR 2652783, DOI 10.1017/S0962492910000048
- Lili Ju, Xiao Li, Zhonghua Qiao, and Hui Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp. 87 (2018), no. 312, 1859–1885. MR 3787394, DOI 10.1090/mcom/3262
- Lili Ju, Jian Zhang, Liyong Zhu, and Qiang Du, Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput. 62 (2015), no. 2, 431–455. MR 3299200, DOI 10.1007/s10915-014-9862-9
- Lili Ju, Xiao Li, and Zhonghua Qiao, Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows, SIAM J. Numer. Anal. 60 (2022), no. 4, 1905–1931. MR 4458898, DOI 10.1137/21M1446496
- Aly-Khan Kassam and Lloyd N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005), no. 4, 1214–1233. MR 2143482, DOI 10.1137/S1064827502410633
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), no. 1, 72–88. MR 2104391, DOI 10.1016/j.jcp.2004.08.006
- J. Douglas Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal. 4 (1967), 372–380. MR 221759, DOI 10.1137/0704033
- Jingwei Li, Xiao Li, Lili Ju, and Xinlong Feng, Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle, SIAM J. Sci. Comput. 43 (2021), no. 3, A1780–A1802. MR 4259913, DOI 10.1137/20M1340678
- Zhaoyi Li and Hong-Lin Liao, Stability of variable-step BDF2 and BDF3 methods, SIAM J. Numer. Anal. 60 (2022), no. 4, 2253–2272. MR 4471049, DOI 10.1137/21M1462398
- Hong-Lin Liao, Tao Tang, and Tao Zhou, Positive definiteness of real quadratic forms resulting from the variable-step L1-type approximations of convolution operators, Sci. China Math. 67 (2024), no. 2, 237–252. MR 4698767, DOI 10.1007/s11425-022-2229-5
- Hong-lin Liao and Zhimin Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp. 90 (2021), no. 329, 1207–1226. MR 4232222, DOI 10.1090/mcom/3585
- Y. Liu, C. Quan, and D. Wang, Maximum bound principle preserving and energy decreasing exponential time differencing schemes for the matrix-valued Allen-Cahn equation, arXiv:2312.15613v1, 2023.
- Vu Thai Luan and Alexander Ostermann, Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. 256 (2014), 168–179. MR 3095695, DOI 10.1016/j.cam.2013.07.027
- Cleve Moler and Charles Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), no. 1, 3–49. MR 1981253, DOI 10.1137/S00361445024180
- S. Maset and M. Zennaro, Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp. 78 (2009), no. 266, 957–967. MR 2476566, DOI 10.1090/S0025-5718-08-02171-6
- David A. Pope, An exponential method of numerical integration of ordinary differential equations, Comm. ACM 6 (1963), 491–493. MR 153118, DOI 10.1145/366707.367592
- A. M. Stuart and A. R. Humphries, Dynamical systems and numerical analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2, Cambridge University Press, Cambridge, 1996. MR 1402909
- Karl Strehmel and Rüdiger Weiner, Linear-implizite Runge-Kutta-Methoden und ihre Anwendung, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 127, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992 (German). With English, French and Russian summaries. MR 1171219, DOI 10.1007/978-3-663-10673-9
- J. G. Verwer, On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root, Numer. Math. 27 (1976/77), no. 2, 143–155. MR 471327, DOI 10.1007/BF01396634
- Xiaoqiang Wang, Lili Ju, and Qiang Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys. 316 (2016), 21–38. MR 3494342, DOI 10.1016/j.jcp.2016.04.004
- Hong Zhang, Lele Liu, Xu Qian, and Songhe Song, Quantifying and eliminating the time delay in stabilization exponential time differencing Runge-Kutta schemes for the Allen-Cahn equation, ESAIM Math. Model. Numer. Anal. 58 (2024), no. 1, 191–221. MR 4705854, DOI 10.1051/m2an/2023101
Bibliographic Information
- Hong-lin Liao
- Affiliation: School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People’s Republic of China; \normalfont and Key Laboratory of Mathematical Modeling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing 211106, People’s Republic of China
- ORCID: 0000-0003-0777-6832
- Email: liaohl@nuaa.edu.cn, liaohl@csrc.ac.cn
- Xuping Wang
- Affiliation: School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, People’s Republic of China
- MR Author ID: 1348698
- ORCID: 0009-0006-1629-9766
- Email: wangxp@nuaa.edu.cn
- Received by editor(s): March 13, 2024
- Received by editor(s) in revised form: June 29, 2024
- Published electronically: September 27, 2024
- Additional Notes: The first author was supported by NSF of China under grant numbers 12471383 and 12071216
- © Copyright 2024 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 35K58, 65L20, 65M06, 65M12
- DOI: https://doi.org/10.1090/mcom/4015