A node-conservative vorticity preserving finite volume method for linear acoustics on unstructured grids
HTML articles powered by AMS MathViewer
- by Wasilij Barsukow, Raphaël Loubère and Pierre-Henri Maire;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4020
- Published electronically: November 20, 2024
- HTML | PDF
Abstract:
Instead of ensuring that fluxes across edges add up to zero, we split the edge in two halves and also associate different fluxes to each of its sides. This is possible due to non-standard Riemann solvers with free parameters. We then enforce conservation by making sure that the fluxes around a node sum up to zero, which fixes the value of the free parameter. We demonstrate that for linear acoustics one of the non-standard Riemann solvers leads to a vorticity preserving method on unstructured meshes.References
- Remi Abgrall and Wasilij Barsukow, Extensions of active flux to arbitrary order of accuracy, ESAIM Math. Model. Numer. Anal. 57 (2023), no. 2, 991–1027. MR 4571672, DOI 10.1051/m2an/2023004
- Rémi Abgrall, Residual distribution schemes: current status and future trends, Comput. & Fluids 35 (2006), no. 7, 641–669. MR 2288613, DOI 10.1016/j.compfluid.2005.01.007
- Debora Amadori and Laurent Gosse, Error estimates for well-balanced schemes on simple balance laws, SpringerBriefs in Mathematics, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. One-dimensional position-dependent models; With a foreword by François Bouchut; BCAM SpringerBriefs. MR 3442979, DOI 10.1007/978-3-319-24785-4
- Wasilij Barsukow, Stationarity preserving schemes for multi-dimensional linear systems, Math. Comp. 88 (2019), no. 318, 1621–1645. MR 3925479, DOI 10.1090/mcom/3394
- Wasilij Barsukow, Stationarity preservation properties of the active flux scheme on Cartesian grids, Commun. Appl. Math. Comput. 5 (2023), no. 2, 638–652. MR 4583856, DOI 10.1007/s42967-020-00094-2
- Wasilij Barsukow, Stationary states of finite volume discretizations of multi-dimensional linear hyperbolic systems, Hyperbolic problems: theory, numerics, applications, AIMS Ser. Appl. Math., vol. 10, Am. Inst. Math. Sci. (AIMS), Springfield, MO, [2020] ©2020, pp. 296–303. MR 4362526
- Wasilij Barsukow, All-speed numerical methods for the Euler equations via a sequential explicit time integration, J. Sci. Comput. 95 (2023), no. 2, Paper No. 53, 53. MR 4568875, DOI 10.1007/s10915-023-02152-2
- Wasilij Barsukow, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek, and Friedrich K. Röpke, A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics, J. Sci. Comput. 72 (2017), no. 2, 623–646. MR 3673689, DOI 10.1007/s10915-017-0372-4
- Wasilij Barsukow, Jonathan Hohm, Christian Klingenberg, and Philip L. Roe, The active flux scheme on Cartesian grids and its low Mach number limit, J. Sci. Comput. 81 (2019), no. 1, 594–622. MR 4002758, DOI 10.1007/s10915-019-01031-z
- Timothy Barth and Dennis Jespersen, The design and application of upwind schemes on unstructured meshes, In 27th Aerospace sciences meeting, 1989, p. 366.
- Wasilij Barsukow and Christian Klingenberg, Exact solution and the multidimensional Godunov scheme for the acoustic equations, ESAIM Math. Model. Numer. Anal. 56 (2022), no. 1, 317–347. MR 4378545, DOI 10.1051/m2an/2021087
- Stéphane Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys. 229 (2010), no. 4, 978–1016. MR 2576236, DOI 10.1016/j.jcp.2009.09.044
- Bruno Després and Constant Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 327–372. MR 2196496, DOI 10.1007/s00205-005-0375-4
- Gérard Gallice, Agnes Chan, Raphaël Loubère, and Pierre-Henri Maire, Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid, J. Comput. Phys. 468 (2022), Paper No. 111493, 33. MR 4466105, DOI 10.1016/j.jcp.2022.111493
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002
- Rolf Jeltsch and Manuel Torrilhon, On curl-preserving finite volume discretizations for shallow water equations, BIT 46 (2006), no. suppl., S35–S53. MR 2281398, DOI 10.1007/s10543-006-0089-5
- R. Loubère, P.-H. Maire, and B. Rebourcet, Staggered and colocated finite volume schemes for Lagrangian hydrodynamics, Handbook of numerical methods for hyperbolic problems, Handb. Numer. Anal., vol. 17, Elsevier/North-Holland, Amsterdam, 2016, pp. 319–352. MR 3643833
- Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov, Mimetic finite difference method. part B, J. Comput. Phys. 257 (2014), no. part B, 1163–1227. MR 3133437, DOI 10.1016/j.jcp.2013.07.031
- Pierre-Henri Maire, Rémi Abgrall, Jérôme Breil, and Jean Ovadia, A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput. 29 (2007), no. 4, 1781–1824. MR 2341812, DOI 10.1137/050633019
- Pierre-Henri Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228 (2009), no. 7, 2391–2425. MR 2501692, DOI 10.1016/j.jcp.2008.12.007
- John J. H. Miller, On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl. 8 (1971), 397–406. MR 300435, DOI 10.1093/imamat/8.3.397
- K. W. Morton and P. L. Roe, Vorticity-preserving Lax-Wendroff-type schemes for the system wave equation, SIAM J. Sci. Comput. 23 (2001), no. 1, 170–192. MR 1860910, DOI 10.1137/S106482759935914X
- Siddhartha Mishra and Eitan Tadmor. Constraint preserving schemes using potential-based fluxes II. genuinely multi-dimensional central schemes for systems of conservation laws. ETH preprint, (2009-32), 2009.
- J. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232 (German). MR 1580948, DOI 10.1515/crll.1917.147.205
- J. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 148 (1918), 122–145 (German). MR 1580958, DOI 10.1515/crll.1918.148.122
- David Sidilkover, Factorizable schemes for the equations of fluid flow, Appl. Numer. Math. 41 (2002), no. 3, 423–436. MR 1903173, DOI 10.1016/S0168-9274(01)00123-4
Bibliographic Information
- Wasilij Barsukow
- Affiliation: Institut de Mathématiques de Bordeaux (IMB), CNRS UMR 5251, 351 Cours de la Libération, 33405 Talence, France
- MR Author ID: 1223236
- ORCID: 0000-0003-2300-105X
- Email: wasilij.barsukow@math.u-bordeaux.fr
- Raphaël Loubère
- Affiliation: Institut de Mathématiques de Bordeaux (IMB), CNRS UMR 5251, 351 Cours de la Libération, 33405 Talence, France
- Email: raphael.loubere@u-bordeaux.fr
- Pierre-Henri Maire
- Affiliation: CEA/Cesta, 33116 Le Barp, France
- MR Author ID: 797688
- Email: pierre-henri.maire@cea.fr
- Received by editor(s): June 5, 2023
- Received by editor(s) in revised form: March 7, 2024
- Published electronically: November 20, 2024
- © Copyright 2024 by the authors
- Journal: Math. Comp.
- MSC (2020): Primary 65M08, 35E15, 35L65
- DOI: https://doi.org/10.1090/mcom/4020