Filtered Lie-Trotter splitting for the “good” Boussinesq equation: Low regularity error estimates
HTML articles powered by AMS MathViewer
- by Lun Ji, Hang Li, Alexander Ostermann and Chunmei Su;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4023
- Published electronically: October 28, 2024
- HTML | PDF | Request permission
Abstract:
We investigate a filtered Lie-Trotter splitting scheme for the “good” Boussinesq equation and derive an error estimate for initial data with very low regularity. Through the use of discrete Bourgain spaces, our analysis extends to initial data in $H^{s}$ for $0<s\leq 2$, overcoming the constraint of $s>1/2$ imposed by the bilinear estimate in smooth Sobolev spaces. We establish convergence rates of order $\tau ^{s/2}$ in $L^2$ for such levels of regularity. Our analytical findings are supported by numerical experiments.References
- J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. (2) 17 (1872), 55–108 (French). MR 3363411
- Jean Bourgain and Dong Li, On an endpoint Kato-Ponce inequality, Differential Integral Equations 27 (2014), no. 11-12, 1037–1072. MR 3263081
- Athanassios G. Bratsos, A second order numerical scheme for the solution of the one-dimensional Boussinesq equation, Numer. Algorithms 46 (2007), no. 1, 45–58. MR 2350368, DOI 10.1007/s11075-007-9126-y
- A. Chapouto, Fourier Restriction Norm Method, Univ. of Edinb., 42 pages, 2018.
- Kelong Cheng, Wenqiang Feng, Sigal Gottlieb, and Cheng Wang, A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy, Numer. Methods Partial Differential Equations 31 (2015), no. 1, 202–224. MR 3285809, DOI 10.1002/num.21899
- H. El-Zoheiry, Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation, Appl. Numer. Math. 45 (2003), no. 2-3, 161–173. MR 1967572, DOI 10.1016/S0168-9274(02)00187-3
- Luiz Gustavo Farah and Márcia Scialom, On the periodic “good” Boussinesq equation, Proc. Amer. Math. Soc. 138 (2010), no. 3, 953–964. MR 2566562, DOI 10.1090/S0002-9939-09-10142-9
- Luiz Gustavo Farah, Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation, Comm. Partial Differential Equations 34 (2009), no. 1-3, 52–73. MR 2512853, DOI 10.1080/03605300802682283
- J. de Frutos, T. Ortega, and J. M. Sanz-Serna, Pseudospectral method for the “good” Boussinesq equation, Math. Comp. 57 (1991), no. 195, 109–122. MR 1079012, DOI 10.1090/S0025-5718-1991-1079012-6
- L. Ji, A. Ostermann, F. Rousset, and K. Schratz, Low regularity error estimates for the time integration of 2D NLS, to appear in IMA J. Numer. Anal. (2024).
- Lun Ji, Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Low regularity full error estimates for the cubic nonlinear Schrödinger equation, SIAM J. Numer. Anal. 62 (2024), no. 5, 2071–2086. MR 4793474, DOI 10.1137/23M1619617
- R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, 1997.
- Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907. MR 951744, DOI 10.1002/cpa.3160410704
- J. T. Kirby, Nonlinear, Dispersive Long Waves in Water of Variable Depth, Technical report, Delaware Univ. Newark Center Appl. Coastal Research, 1996.
- Nobu Kishimoto, Sharp local well-posedness for the “good” Boussinesq equation, J. Differential Equations 254 (2013), no. 6, 2393–2433. MR 3016208, DOI 10.1016/j.jde.2012.12.008
- V. C. Lakhan, Advances in Coastal Modeling, Elsevier, New York, 2003.
- E. Lambert, M. Musette, and E. Kesteloot, Soliton resonances for the good Boussinesq equation, Inverse Problems 3 (1987), no. 2, 275–288. MR 913398, DOI 10.1088/0266-5611/3/2/010
- B. Li and Y. Wu, An unfiltered low-regularity integrator for the KdV equation with solutions below $H^1$, arXiv:2206.09320, 2022.
- Hang Li and Chunmei Su, Low regularity exponential-type integrators for the “good” Boussinesq equation, IMA J. Numer. Anal. 43 (2023), no. 6, 3656–3684. MR 4673671, DOI 10.1093/imanum/drac081
- Dong Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam. 35 (2019), no. 1, 23–100. MR 3914540, DOI 10.4171/rmi/1049
- V. S. Manoranjan, A. R. Mitchell, and J. Ll. Morris, Numerical solutions of the good Boussinesq equation, SIAM J. Sci. Statist. Comput. 5 (1984), no. 4, 946–957. MR 765215, DOI 10.1137/0905065
- V. S. Manoranjan, T. Ortega, and J. M. Sanz-Serna, Soliton and antisoliton interactions in the “good” Boussinesq equation, J. Math. Phys. 29 (1988), no. 9, 1964–1968. MR 957220, DOI 10.1063/1.527850
- Seungly Oh and Atanas Stefanov, Improved local well-posedness for the periodic “good” Boussinesq equation, J. Differential Equations 254 (2013), no. 10, 4047–4065. MR 3032295, DOI 10.1016/j.jde.2013.02.006
- Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Error estimates at low regularity of splitting schemes for NLS, Math. Comp. 91 (2021), no. 333, 169–182. MR 4350536, DOI 10.1090/mcom/3676
- Alexander Ostermann, Frédéric Rousset, and Katharina Schratz, Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 10, 3913–3952. MR 4634686, DOI 10.4171/jems/1275
- Alexander Ostermann and Chunmei Su, Two exponential-type integrators for the “good” Boussinesq equation, Numer. Math. 143 (2019), no. 3, 683–712. MR 4020668, DOI 10.1007/s00211-019-01064-4
- Frédéric Rousset and Katharina Schratz, Convergence error estimates at low regularity for time discretizations of KdV, Pure Appl. Anal. 4 (2022), no. 1, 127–152. MR 4419370, DOI 10.2140/paa.2022.4.127
- Chunmei Su and Wenqi Yao, A Deuflhard-type exponential integrator Fourier pseudo-spectral method for the “good” Boussinesq equation, J. Sci. Comput. 83 (2020), no. 1, Paper No. 4, 19. MR 4077724, DOI 10.1007/s10915-020-01192-2
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- B. Tatlock, R. Briganti, R. E. Musumeci, and M. Brocchini, An assessment of the roller approach for wave breaking in a hybrid finite-volume finite-difference Boussinesq-type model for the surf-zone, Appl. Ocean Res. 73, (2018), 160–178.
- Hongwei Wang and Amin Esfahani, Well-posedness for the Cauchy problem associated to a periodic Boussinesq equation, Nonlinear Anal. 89 (2013), 267–275. MR 3073330, DOI 10.1016/j.na.2013.04.011
- Cheng Zhang, Hui Wang, Jingfang Huang, Cheng Wang, and Xingye Yue, A second order operator splitting numerical scheme for the “good” Boussinesq equation, Appl. Numer. Math. 119 (2017), 179–193. MR 3657190, DOI 10.1016/j.apnum.2017.04.006
Bibliographic Information
- Lun Ji
- Affiliation: Department of Mathematics, Universität Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
- MR Author ID: 1376264
- ORCID: 0009-0000-8330-4306
- Email: lun.ji@uibk.ac.at
- Hang Li
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing, People’s Republic of China
- Email: lihang20@mails.tsinghua.edu.cn
- Alexander Ostermann
- Affiliation: Department of Mathematics, Universität Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria
- MR Author ID: 134575
- ORCID: 0000-0003-0194-2481
- Email: alexander.ostermann@uibk.ac.at
- Chunmei Su
- Affiliation: Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing, People’s Repulic of China
- ORCID: 0000-0002-7934-592X
- Email: sucm@tsinghua.edu.cn
- Received by editor(s): March 15, 2024
- Received by editor(s) in revised form: August 19, 2024, and September 3, 2024
- Published electronically: October 28, 2024
- Additional Notes: The second and fourth authors were supported by National Key R&D Program of China (Grant No. 2023YFA1008902) and the NSFC 12201342.
The second author is the corresponding author. - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 35G31; Secondary 65M12, 65M15, 65M70
- DOI: https://doi.org/10.1090/mcom/4023