On the computation of lattice sums without translational invariance
HTML articles powered by AMS MathViewer
- by Andreas A. Buchheit, Torsten Keßler and Kirill Serkh;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4024
- Published electronically: October 28, 2024
- HTML | PDF | Request permission
Abstract:
This paper introduces a new method for the efficient computation of oscillatory multidimensional lattice sums in geometries with boundaries. Such sums are ubiquitous in both pure and applied mathematics and have immediate applications in condensed matter and topological quantum physics. The challenge in their evaluation results from the combination of singular long-range interactions with the loss of translational invariance caused by the boundaries, rendering standard tools like Ewald summation ineffective. Our work shows that these lattice sums can be generated from a generalization of the Riemann zeta function to multidimensional non-periodic lattice sums. We put forth a new representation of this zeta function together with a numerical algorithm that ensures exponential convergence across an extensive range of geometries. Notably, our method’s runtime is influenced only by the complexity of the considered geometries and not by the number of particles, providing the foundation for efficient and precise simulations of macroscopic condensed matter systems. We showcase the practical utility of our method by computing interaction energies in a three-dimensional crystal structure with $3\times 10^{23}$ particles. Our method’s accuracy is demonstrated through extensive numerical experiments. A reference implementation is provided online along with this article.References
- M. Aghaee, A. Akkala, Z. Alam, R. Ali, A. A. Ramirez, M. Andrzejczuk, A. E. Antipov, P. Aseev, M. Astafev, B. Bauer, et al., Inas-al hybrid devices passing the topological gap protocol, Phys. Rev. B 107 (2023), no. 24, 245423, DOI 10.1103/PhysRevB.107.245423.
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- J. M. Borwein, M. L. Glasser, R. C. McPhedran, J. G. Wan, and I. J. Zucker, Lattice sums then and now, Encyclopedia of Mathematics and its Applications, vol. 150, Cambridge University Press, Cambridge, 2013. With a foreword by Helaman Ferguson and Claire Ferguson. MR 3135109, DOI 10.1017/CBO9781139626804
- S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, Measurement of the charge and current of magnetic monopoles in spin ice, Nature 461 (2009), no. 7266, 956–959, DOI 10.1038/nature08500.
- S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science 294 (2001), no. 5546, 1495–1501, DOI 10.1126/science.1064761.
- S. T. Bramwell and M. J. Harris, The history of spin ice, J. Phys.: Condens. Matter 32 (2020), no. 37, 374010, DOI 10.1088/1361-648x/ab8423.
- A. A. Buchheit and T. Keßler, GitHub release: continuum representation 2.2, 2023, DOI 10.5281/zenodo.7575976.
- Andreas A. Buchheit and Torsten Keßler, On the efficient computation of large scale singular sums with applications to long-range forces in crystal lattices, J. Sci. Comput. 90 (2022), no. 1, Paper No. 53, 20. MR 4353499, DOI 10.1007/s10915-021-01731-5
- A. A. Buchheit and T. Keßler, Singular euler–maclaurin expansion on multidimensional lattices, Nonlinearity 35 (2022), no. 7, 3706, DOI 10.1088/1361-6544/ac73d0.
- A. A. Buchheit, T. Keßler, P. K. Schuhmacher, and B. Fauseweh, Exact continuum representation of long-range interacting systems and emerging exotic phases in unconventional superconductors, Phys. Rev. Res. 5 (2023), 043065, DOI 10.1103/PhysRevResearch.5.043065.
- A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics of long-range interacting systems, Oxford University Press, Oxford, 2014. With a foreword by David Mukamel. MR 3241433, DOI 10.1093/acprof:oso/9780199581931.001.0001
- C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic monopoles in spin ice, Nature 451 (2008), no. 7174, 42–45, DOI 10.1038/nature06433.
- S. Chen, K. Serkh, and J. Bremer, On the adaptive levin method, preprint arXiv:2211.13400 (2022), DOI 10.48550/arXiv.2211.13400.
- S. Chowla and A. Selberg, On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374. MR 30997, DOI 10.1073/pnas.35.7.371
- R. Crandall, Unified Algorithms for Polylogarithm, L-series, and Zeta Variants, PSIpress, 2012.
- E. Elizalde, Multidimensional extension of the generalized Chowla-Selberg formula, Comm. Math. Phys. 198 (1998), no. 1, 83–95. MR 1657369, DOI 10.1007/s002200050472
- Emilio Elizalde, Ten physical applications of spectral zeta functions, 2nd ed., Lecture Notes in Physics, vol. 855, Springer, Heidelberg, 2012. MR 2934635, DOI 10.1007/978-3-642-29405-1
- O. Emersleben, Zetafunktionen und elektrostatische Gitterpotentiale. I, Phys. Z 24 (1923), 73–80.
- O. Emersleben, Zetafunktionen und elektrostatische Gitterpotentiale. II, Phys. Z 24 (1923), 97–104.
- Paul Epstein, Zur Theorie allgemeiner Zetafunctionen, Math. Ann. 56 (1903), no. 4, 615–644 (German). MR 1511190, DOI 10.1007/BF01444309
- Paul Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), no. 2, 205–216 (German). MR 1511399, DOI 10.1007/BF01449900
- S. Fey, S. C. Kapfer, and K. P. Schmidt, Quantum criticality of two-dimensional quantum magnets with long-range interactions, Phys. Rev. Lett. 122 (2019), no. 1, 017203, DOI 10.1103/PhysRevLett. 122.017203.
- G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. K. Amiri, and Z. Zeng, The promise of spintronics for unconventional computing, J. Magn. Magn. Mater. 521 (2021), 167506, DOI 10.1016/j.jmmm.2020.167506.
- H. Gao, F. Schlawin, and D. Jaksch, Higgs mode stabilization by photoinduced long-range interactions in a superconductor, Phys. Rev. B 104 (2021), no. 14, L140503, DOI 10.1103/ PhysRevB.104.L140503.
- I. M. Gel’fand and G. E. Shilov, Generalized Functions, Academic Press, 1964.
- A. Gil, J. Segura, and N. M. Temme, Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios, SIAM Journal on Scientific Computing 34 (2012), no. 6, A2965–A2981, DOI 10.1137/120872553.
- M. L. Glasser, The evaluation of lattice sums. I. Analytic procedures, J. Mathematical Phys. 14 (1973), 409–413. MR 316780, DOI 10.1063/1.1666331
- M. L. Glasser, The evaluation of lattice sums. II. Number-theoretic approach, J. Mathematical Phys. 14 (1973), 701–703. MR 330070, DOI 10.1063/1.1666381
- S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math. Phys. 55 (1977), no. 2, 133–148. MR 524257, DOI 10.1007/BF01626516
- Johan Helsing and Rikard Ojala, On the evaluation of layer potentials close to their sources, J. Comput. Phys. 227 (2008), no. 5, 2899–2921. MR 2388507, DOI 10.1016/j.jcp.2007.11.024
- J. Horváth, Topological vector spaces and distributions, Addision–Wesley Publications, 1966, Reprinted by Dover, 2012.
- S. G. Johnson, Faddeeva package, http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package, 2012, Accessed: June 5, 2023.
- Frans Lemeire, Bounds for condition numbers of triangular and trapezoid matrices, Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 1, 58–64. MR 501837, DOI 10.1007/bf01932996
- R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes in superconductor–semiconductor heterostructures, Nat. Rev. Mater. 3 (2018), no. 5, 52–68, DOI 10.1038/s41578-018-0003-1.
- J. C. Martinez, W. S. Lew, W. L. Gan, and M. B. A. Jalil, Theory of current-induced skyrmion dynamics close to a boundary, J. Magn. Magn. Mater. 465 (2018), 685–691, DOI 10.1016/j.jmmm.2018.06.031.
- D. O’Dell, S. Giovanazzi, G. Kurizki, and V. M. Akulin, Bose-einstein condensates with $1/r$ interatomic attraction: electromagnetically induced “gravity”, Phys. Rev. Lett. 84 (2000), 5687–5690, DOI 10.1103/PhysRevLett.84.5687.
- C. Psaroudaki and C. Panagopoulos, Skyrmion qubits: a new class of quantum logic elements based on nanoscale magnetization, Phys. Rev. Lett. 127 (2021), no. 6, 067201, DOI 10.1103/PhysRevLett. 127.067201.
- P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local propagation of correlations in quantum systems with long-range interactions, Nature 511 (2014), no. 7508, 198–201, DOI 10.1038/nature13450.
- Daniel Shanks, Calculation and applications of Epstein zeta functions, Math. Comp. 29 (1975), 271–287. MR 409357, DOI 10.1090/S0025-5718-1975-0409357-2
- Z. Shen and K. Serkh, On polynomial interpolation in the monomial basis, preprint arXiv:2212.10519 (2022), DOI 10.48550/arXiv.2212.10519.
- K. M. Song, J.-S. Jeong, B. Pan, X. Zhang, J. Xia, S. Cha, T.-E. Park, K. Kim, S. Finizio, J. Raabe, et al., Skyrmion-based artificial synapses for neuromorphic computing, Nat. Electron. 3 (2020), no. 3, 148–155, DOI 10.1038/s41928-020-0385-0.
- Audrey Terras, Harmonic analysis on symmetric spaces—Euclidean space, the sphere, and the Poincaré upper half-plane, 2nd ed., Springer, New York, 2013. MR 3100414, DOI 10.1007/978-1-4614-7972-7
- Audrey A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486. MR 323735, DOI 10.1090/S0002-9947-1973-0323735-6
- A. Y. Toukmaji and J. A. Board Jr, Ewald summation techniques in perspective: a survey, Comput. Phys. Commun. 95 (1996), no. 2–3, 73–92, DOI 10.1016/0010-4655(96)00016-1.
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 225131
- X. Zhang, J. Xia, Y. Zhou, X. Liu, H. Zhang, and M. Ezawa, Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Nat. Commun. 8 (2017), no. 1, 1–10, DOI 10.1038/s41467-017-01785-w.
- I. J. Zucker, The exact evaluation of some new lattice sums, Symmetry 9 (2017), no. 12, 314, DOI 10.3390/sym9120314.
Bibliographic Information
- Andreas A. Buchheit
- Affiliation: Department of Mathematics, Saarland University, 66123 Saarbrücken, Germany
- MR Author ID: 1383541
- ORCID: 0000-0003-4004-713X
- Email: buchheit@num.uni-sb.de
- Torsten Keßler
- Affiliation: Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
- MR Author ID: 1313761
- ORCID: 0000-0003-2530-6746
- Kirill Serkh
- Affiliation: Departments of Mathematics and Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
- MR Author ID: 1025229
- ORCID: 0000-0003-4751-305X
- Received by editor(s): May 6, 2024
- Received by editor(s) in revised form: September 3, 2024
- Published electronically: October 28, 2024
- Additional Notes: The authors received scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project n101af. NHR funding was provided by federal and Bavarian state authorities. NHR@FAU hardware was partially funded by the German Research Foundation (DFG)–440719683. The second author received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987. The third author’s work was supported in part by the NSERC Discovery Grants RGPIN-2020-06022 and DGECR-2020-00356.
The first author is the corresponding author - © Copyright 2024 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 11E45, 40H05, 46F10, 65B15; Secondary 82D40
- DOI: https://doi.org/10.1090/mcom/4024