Computing $p$-adic heights on hyperelliptic curves
HTML articles powered by AMS MathViewer
- by Stevan Gajović and J. Steffen Müller;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4028
- Published electronically: November 15, 2024
- HTML | PDF
Abstract:
We describe an algorithm to compute the local Coleman–Gross $p$-adic height at $p$ on a hyperelliptic curve. Previously, this was only possible using an algorithm due to Balakrishnan and Besser, which was limited to odd degree. While we follow their general strategy, our algorithm is significantly faster and simpler and works for both odd and even degree. We discuss a precision analysis and an implementation in SageMath. Our work has several applications, also discussed in this article. These include various versions of the quadratic Chabauty method, and numerical evidence for a $p$-adic version of the conjecture of Birch and Swinnerton–Dyer in cases where this was not previously possible.References
- Nikola Adžaga, Vishal Arul, Lea Beneish, Mingjie Chen, Shiva Chidambaram, Timo Keller, and Boya Wen, Quadratic Chabauty for Atkin-Lehner quotients of modular curves of prime level and genus 4, 5, 6, Acta Arith. 208 (2023), no. 1, 15–49. MR 4616870, DOI 10.4064/aa220110-7-3
- Jennifer S. Balakrishnan, Coleman integration for even-degree models of hyperelliptic curves, LMS J. Comput. Math. 18 (2015), no. 1, 258–265. MR 3349319, DOI 10.1112/S1461157015000029
- Jennifer S. Balakrishnan and Amnon Besser, Computing local $p$-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 11 (2012), 2405–2444. MR 2926986, DOI 10.1093/imrn/rnr111
- J. S. Balakrishnan, A. J. Best, F. Bianchi, B. Lawrence, J. S. Müller, N. Triantafillou, and J. Vonk, Two recent $p$-adic approaches towards the (effective) Mordell conjecture, Arithmetic L-functions and differential geometric methods, Progr. Math., vol. 338, Birkhäuser/Springer, Cham, [2021] ©2021, pp. 31–74. MR 4311238, DOI 10.1007/978-3-030-65203-6_{2}
- Jennifer S. Balakrishnan, Amnon Besser, Francesca Bianchi, and J. Steffen Müller, Explicit quadratic Chabauty over number fields, Israel J. Math. 243 (2021), no. 1, 185–232. MR 4299146, DOI 10.1007/s11856-021-2158-5
- Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 16–31. MR 2721410, DOI 10.1007/978-3-642-14518-6_{6}
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Quadratic Chabauty: $p$-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. MR 3565969, DOI 10.1515/crelle-2014-0048
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403–1434. MR 3614022, DOI 10.1090/mcom/3130
- Francesco Baldassarri and Bruno Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 11–50. MR 1307391
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points, I: $p$-adic heights, Duke Math. J. 167 (2018), no. 11, 1981–2038. With an appendix by J. Steffen Müller. MR 3843370, DOI 10.1215/00127094-2018-0013
- Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties, Int. Math. Res. Not. IMRN 15 (2021), 11923–12008. MR 4294137, DOI 10.1093/imrn/rnz362
- Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885–944. MR 3961086, DOI 10.4007/annals.2019.189.3.6
- Jennifer S. Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Quadratic Chabauty for modular curves: algorithms and examples, Compos. Math. 159 (2023), no. 6, 1111–1152. MR 4589060, DOI 10.1112/s0010437x23007170
- Pierre Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), no. 2, 329–377 (French). With an appendix in English by Aise Johan de Jong. MR 1440308, DOI 10.1007/s002220050143
- Amnon Besser, Syntomic regulators and $p$-adic integration. II. $K_2$ of curves. part B, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. 335–359. MR 1809627, DOI 10.1007/BF02834844
- Amnon Besser, $p$-adic Arakelov theory, J. Number Theory 111 (2005), no. 2, 318–371. MR 2130113, DOI 10.1016/j.jnt.2004.11.010
- Alex J. Best, Square root time Coleman integration on superelliptic curves, Arithmetic geometry, number theory, and computation, Simons Symp., Springer, Cham, [2021] ©2021, pp. 105–129. MR 4427961, DOI 10.1007/978-3-030-80914-0_{3}
- Jennifer S. Balakrishnan, J. Steffen Müller, and William A. Stein, A $p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties, Math. Comp. 85 (2016), no. 298, 983–1016. MR 3434891, DOI 10.1090/mcom/3029
- A. Besser, J. S. Müller, and P. Srinivasan, $p$-adic adelic metrics and quadratic Chabauty I, Preprint, arXiv:2112.03873, 2021.
- Dominique Bernardi and Bernadette Perrin-Riou, Variante $p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 227–232 (French, with English and French summaries). MR 1233417
- Nils Bruin and Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. MR 2685127, DOI 10.1112/S1461157009000187
- Jennifer S. Balakrishnan and Jan Tuitman, Explicit Coleman integration for curves, Math. Comp. 89 (2020), no. 326, 2965–2984. MR 4136553, DOI 10.1090/mcom/3542
- Robert Coleman and Ehud de Shalit, $p$-adic regulators on curves and special values of $p$-adic $L$-functions, Invent. Math. 93 (1988), no. 2, 239–266. MR 948100, DOI 10.1007/BF01394332
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. MR 782557, DOI 10.2307/1971194
- Robert F. Coleman, The universal vectorial bi-extension and $p$-adic heights, Invent. Math. 103 (1991), no. 3, 631–650. MR 1091621, DOI 10.1007/BF01239529
- Pierre Colmez, Intégration sur les variétés $p$-adiques, Astérisque 248 (1998), viii+155 (French, with English and French summaries). MR 1645429
- Juanita Duque-Rosero, Sachi Hashimoto, and Pim Spelier, Geometric quadratic Chabauty and $p$-adic heights, Expo. Math. 41 (2023), no. 3, 631–674. MR 4644844, DOI 10.1016/j.exmath.2023.05.003
- Bas Edixhoven and Guido Lido, Geometric quadratic Chabauty, J. Inst. Math. Jussieu 22 (2023), no. 1, 279–333. MR 4556934, DOI 10.1017/S1474748021000244
- E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, DOI 10.1090/S0025-5718-01-01320-5
- S. Gajović, Variations on the method of Chabauty and Coleman, Ph.D. Thesis, University of Groningen, 2022.
- S. Gajović and J. S. Müller, Linear quadratic Chabauty, Preprint, arXiv:2307.15781, 2023, Israel J. Math., To appear.
- Benedict H. Gross, Local heights on curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 327–339. MR 861983
- Michael C. Harrison, An extension of Kedlaya’s algorithm for hyperelliptic curves, J. Symbolic Comput. 47 (2012), no. 1, 89–101. MR 2854849, DOI 10.1016/j.jsc.2011.08.019
- David Holmes, Computing Néron-Tate heights of points on hyperelliptic Jacobians, J. Number Theory 132 (2012), no. 6, 1295–1305. MR 2899805, DOI 10.1016/j.jnt.2012.01.002
- Adrian Iovita, Formal sections and de Rham cohomology of semistable abelian varieties. part B, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. 429–447. MR 1809629, DOI 10.1007/BF02834846
- Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338. MR 1877805
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- Minhyong Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. MR 2512779, DOI 10.2977/prims/1234361156
- Timo Keller and Michael Stoll, Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces, C. R. Math. Acad. Sci. Paris 360 (2022), 483–489 (English, with English and French summaries). MR 4449854, DOI 10.5802/crmath.313
- T. Keller and M. Stoll, Complete verification of strong bsd for many modular abelian surfaces over $\mathbf {Q}$, Preprint, arXiv:2312.07307, 2023.
- B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61. MR 354674, DOI 10.1007/BF01389997
- B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- Jan Steffen Müller, Computing canonical heights using arithmetic intersection theory, Math. Comp. 83 (2014), no. 285, 311–336. MR 3120591, DOI 10.1090/S0025-5718-2013-02719-6
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $p$-adic $L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 1–42 (English, with English and French summaries). MR 2760194, DOI 10.24033/asens.2139
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, DOI 10.1007/BF01389362
- William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757–1792. MR 3042584, DOI 10.1090/S0025-5718-2012-02649-4
- The Sage Developers, SageMath, the Sage Mathematics software system (version 9.8), 2023, https://www.sagemath.org.
- Jan Tuitman, Counting points on curves using a map to $\mathbf {P}^1$, II, Finite Fields Appl. 45 (2017), 301–322. MR 3631366, DOI 10.1016/j.ffa.2016.12.008
- Raymond van Bommel, Numerical verification of the Birch and Swinnerton-Dyer conjecture for hyperelliptic curves of higher genus over $\Bbb {Q}$ up to squares, Exp. Math. 31 (2022), no. 1, 138–145. MR 4399114, DOI 10.1080/10586458.2019.1592035
- Raymond van Bommel, David Holmes, and J. Steffen Müller, Explicit arithmetic intersection theory and computation of Néron-Tate heights, Math. Comp. 89 (2020), no. 321, 395–410. MR 4011549, DOI 10.1090/mcom/3441
- Marius van der Put, The cohomology of Monsky and Washnitzer, Mém. Soc. Math. France (N.S.) 23 (1986), 4, 33–59 (English, with French summary). Introductions aux cohomologies $p$-adiques (Luminy, 1984). MR 865811
Bibliographic Information
- Stevan Gajović
- Affiliation: Faculty of Mathematics and Physics, Department of Algebra, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
- ORCID: 0000-0003-3846-5199
- Email: gajovic@karlin.mff.cuni.cz
- J. Steffen Müller
- Affiliation: Faculty of Science and Engineering, Algebra, University of Groningen, Nijenborgh 9, 9747 AG Groningen, Netherlands
- MR Author ID: 895560
- Email: steffen.muller@rug.nl
- Received by editor(s): September 8, 2023
- Received by editor(s) in revised form: January 12, 2024, and June 28, 2024
- Published electronically: November 15, 2024
- Additional Notes: The authors were supported by DFG through DFG-Grant MU 4110/1-1. In addition, the second author was supported by NWO Grant VI.Vidi.192.106, and the first author was supported by a guest postdoc fellowship at the Max Planck Institute for Mathematics in Bonn, by Czech Science Foundation GAČR, grant 21-00420M, and by Charles University Research Centre program UNCE/SCI/022 during various stages of this project. Part of this research was done during a visit of the first author to Boston University, partially supported by a Diamant PhD Travel Grant.
- © Copyright 2024 by the authors
- Journal: Math. Comp.
- MSC (2020): Primary 11G50
- DOI: https://doi.org/10.1090/mcom/4028