A class of discontinuous Galerkin methods for nonlinear variational problems
HTML articles powered by AMS MathViewer
- by G. Grekas, K. Koumatos, C. Makridakis and A. Vikelis;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4040
- Published electronically: January 23, 2025
- HTML | PDF | Request permission
Abstract:
In the context of discontinuous Galerkin methods, we study approximations of nonlinear variational problems. We propose element-wise nonconforming finite element methods to discretize the continuous minimisation problem. Using $\Gamma$-convergence arguments we show that for convex energies the discrete minimisers converge to a minimiser of the continuous problem as the mesh parameter tends to zero, under the additional contribution of appropriately defined penalty terms at the level of the discrete energies. In addition, we provide error analysis in the case where the solution of the continuous minimization problem is smooth enough. Under appropriate assumptions we show local existence, uniqueness and corresponding optimal order error estimates for the discrete Euler-Lagrange equations of our scheme. We finally substantiate the feasibility of our methods by numerical examples.References
- M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The fenics project version 1.5, Archive of numerical software, 3 (2015), 100.
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292, DOI 10.1093/oso/9780198502456.001.0001
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Sören Bartels, Andrea Bonito, and Ricardo H. Nochetto, Bilayer plates: model reduction, $\Gamma$-convergent finite element approximation, and discrete gradient flow, Comm. Pure Appl. Math. 70 (2017), no. 3, 547–589. MR 3602530, DOI 10.1002/cpa.21626
- Andrea Bonito, Ricardo H. Nochetto, and Dimitrios Ntogkas, DG approach to large bending plate deformations with isometry constraint, Math. Models Methods Appl. Sci. 31 (2021), no. 1, 133–175. MR 4216049, DOI 10.1142/S0218202521500044
- Annalisa Buffa and Christoph Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal. 29 (2009), no. 4, 827–855. MR 2557047, DOI 10.1093/imanum/drn038
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Bernard Dacorogna, Direct methods in the calculus of variations, 2nd ed., Applied Mathematical Sciences, vol. 78, Springer, New York, 2008. MR 2361288
- Constantine M. Dafermos and William J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Rational Mech. Anal. 87 (1985), no. 3, 267–292. MR 768069, DOI 10.1007/BF00250727
- Daniele A. Di Pietro and Alexandre Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79 (2010), no. 271, 1303–1330. MR 2629994, DOI 10.1090/S0025-5718-10-02333-1
- Georgios Grekas, Konstantinos Koumatos, Charalambos Makridakis, and Phoebus Rosakis, Approximations of energy minimization in cell-induced phase transitions of fibrous biomaterials: $\Gamma$-convergence analysis, SIAM J. Numer. Anal. 60 (2022), no. 2, 715–750. MR 4402919, DOI 10.1137/20M137286X
- Matthias K. Gobbert and Andreas Prohl, A discontinuous finite element method for solving a multiwell problem, SIAM J. Numer. Anal. 37 (1999), no. 1, 246–268. MR 1742750, DOI 10.1137/S0036142998333791
- Konstantinos Koumatos, Corrado Lattanzio, Stefano Spirito, and Athanasios E. Tzavaras, Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy, J. Hyperbolic Differ. Equ. 20 (2023), no. 2, 433–474. MR 4626577, DOI 10.1142/S0219891623500133
- Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. MR 2034620, DOI 10.1137/S0036142902405217
- Konstantinos Koumatos and Andreas P. Vikelis, $\mathcal {A}$-quasiconvexity, Gårding inequalities, and applications in PDE constrained problems in dynamics and statics, SIAM J. Math. Anal. 53 (2021), no. 4, 4178–4211. MR 4292308, DOI 10.1137/20M1345128
- Charalambos G. Makridakis, Finite element approximations of nonlinear elastic waves, Math. Comp. 61 (1993), no. 204, 569–594. MR 1195426, DOI 10.1090/S0025-5718-1993-1195426-X
- Ch. Makridakis, F. Ihlenburg, and I. Babuška, Analysis and finite element methods for a fluid-solid interaction problem in one dimension, Math. Models Methods Appl. Sci. 6 (1996), no. 8, 1119–1141. MR 1428148, DOI 10.1142/S0218202596000468
- Charalambos Makridakis, Dimitrios Mitsoudis, and Phoebus Rosakis, On atomistic-to-continuum couplings without ghost forces in three dimensions, Appl. Math. Res. Express. AMRX 1 (2014), 87–113. MR 3181783, DOI 10.1093/amrx/abt005
- Christoph Ortner and Endre Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems, SIAM J. Numer. Anal. 45 (2007), no. 4, 1370–1397. MR 2338392, DOI 10.1137/06067119X
- Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
- A. Ten Eyck and A. Lew, Discontinuous Galerkin methods for non-linear elasticity, Internat. J. Numer. Methods Engrg. 67 (2006), no. 9, 1204–1243. MR 2248082, DOI 10.1002/nme.1667
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- G. Grekas
- Affiliation: Institute of Applied & Computational Mathematics, Foundation for Research & Technology-Hellas; and Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 1467496
- ORCID: 0000-0002-0267-0150
- K. Koumatos
- Affiliation: Department of Mathematics, University of Sussex
- MR Author ID: 1064885
- C. Makridakis
- Affiliation: Institute of Applied & Computational Mathematics, Foundation for Research & Technology-Hellas; and Department of Mathematics, University of Sussex; and Department of Mathematics and Applied Mathematics, University of Crete
- MR Author ID: 289627
- A. Vikelis
- Affiliation: Faculty of Mathematics, University of Vienna
- MR Author ID: 1449160
- Received by editor(s): August 5, 2023
- Received by editor(s) in revised form: March 11, 2024, and September 10, 2024
- Published electronically: January 23, 2025
- Additional Notes: The research of the second author was partially supported by EPSRC, United Kingdom EP/X038998/1 grant and the Dr Perry James (Jim) Browne Research Centre, University of Sussex. The research of the fourth author was funded in whole by the Austrian Science Fund (FWF) projects I4354 and I5149.
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65N30, 49J45
- DOI: https://doi.org/10.1090/mcom/4040