Stability, convergence, and pressure-robustness of numerical schemes for incompressible flows with hybrid velocity and pressure
HTML articles powered by AMS MathViewer
- by Lorenzo Botti, Michele Botti, Daniele A. Di Pietro and Francesco Carlo Massa;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4049
- Published electronically: January 22, 2025
- HTML | PDF | Request permission
Abstract:
In this work we study the stability, convergence, and pressure-robustness of discretization methods for incompressible flows with hybrid velocity and pressure. Specifically, focusing on the Stokes problem, we identify a set of assumptions that yield inf-sup stability as well as error estimates which distinguish the velocity- and pressure-related contributions to the error. We additionally identify the key properties under which the pressure-related contributions vanish in the estimate of the velocity, thus leading to pressure-robustness. Several examples of existing and new schemes that fit into the framework are exhibited, and extensive numerical validation of the theoretical properties is provided.References
- Joubine Aghili, Sébastien Boyaval, and Daniele A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations, Comput. Methods Appl. Math. 15 (2015), no. 2, 111–134. MR 3331714, DOI 10.1515/cmam-2015-0004
- Blanca Ayuso de Dios, Konstantin Lipnikov, and Gianmarco Manzini, The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 879–904. MR 3507277, DOI 10.1051/m2an/2015090
- Aaron Baier-Reinio, Sander Rhebergen, and Garth N. Wells, Analysis of pressure-robust embedded-hybridized discontinuous Galerkin methods for the Stokes problem under minimal regularity, J. Sci. Comput. 92 (2022), no. 2, Paper No. 51, 25. MR 4447238, DOI 10.1007/s10915-022-01889-6
- Lourenço Beirão da Veiga, Daniele A. Di Pietro, and Kirubell B. Haile, A Péclet-robust discontinuous Galerkin method for nonlinear diffusion with advection, Math. Models Methods Appl. Sci. 34 (2024), no. 9, 1781–1807. MR 4780934, DOI 10.1142/s0218202524500350
- Lourenço Beirão da Veiga, Franco Dassi, Daniele A. Di Pietro, and Jérôme Droniou, Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 397 (2022), Paper No. 115061, 31. MR 4436363, DOI 10.1016/j.cma.2022.115061
- L. Belenki, L. C. Berselli, L. Diening, and M. Růžička, On the finite element approximation of $p$-Stokes systems, SIAM J. Numer. Anal. 50 (2012), no. 2, 373–397. MR 2914267, DOI 10.1137/10080436X
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Lorenzo Botti and Francesco Carlo Massa, HHO methods for the incompressible Navier-Stokes and the incompressible Euler equations, J. Sci. Comput. 92 (2022), no. 1, Paper No. 28, 38. MR 4439881, DOI 10.1007/s10915-022-01864-1
- Lorenzo Botti, Daniele A. Di Pietro, and Jérôme Droniou, A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits, Comput. Methods Appl. Mech. Engrg. 341 (2018), 278–310. MR 3845625, DOI 10.1016/j.cma.2018.07.004
- Michele Botti, Daniel Castanon Quiroz, Daniele A. Di Pietro, and André Harnist, A hybrid high-order method for creeping flows of non-Newtonian fluids, ESAIM Math. Model. Numer. Anal. 55 (2021), no. 5, 2045–2073. MR 4319602, DOI 10.1051/m2an/2021051
- Susanne C. Brenner, Forty years of the Crouzeix-Raviart element, Numer. Methods Partial Differential Equations 31 (2015), no. 2, 367–396. MR 3312124, DOI 10.1002/num.21892
- Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581–604 (English, with French summary). MR 921828, DOI 10.1051/m2an/1987210405811
- Erik Burman and Alexandre Ern, Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian, C. R. Math. Acad. Sci. Paris 346 (2008), no. 17-18, 1013–1016 (English, with English and French summaries). MR 2449647, DOI 10.1016/j.crma.2008.07.005
- Daniel Castanon Quiroz and Daniele A. Di Pietro, A hybrid high-order method for the incompressible Navier-Stokes problem robust for large irrotational body forces, Comput. Math. Appl. 79 (2020), no. 9, 2655–2677. MR 4079560, DOI 10.1016/j.camwa.2019.12.005
- Daniel Castanon Quiroz and Daniele A. Di Pietro, A pressure-robust HHO method for the solution of the incompressible Navier-Stokes equations on general meshes, IMA J. Numer. Anal. 44 (2024), no. 1, 397–434. MR 4699582, DOI 10.1093/imanum/drad007
- Aycil Cesmelioglu, Bernardo Cockburn, and Weifeng Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comp. 86 (2017), no. 306, 1643–1670. MR 3626531, DOI 10.1090/mcom/3195
- Bernardo Cockburn, Daniele A. Di Pietro, and Alexandre Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 3, 635–650. MR 3507267, DOI 10.1051/m2an/2015051
- Bernardo Cockburn and Jayadeep Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal. 47 (2009), no. 2, 1092–1125. MR 2485446, DOI 10.1137/080726653
- Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow, Math. Comp. 80 (2011), no. 274, 723–760. MR 2772094, DOI 10.1090/S0025-5718-2010-02410-X
- Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput. 31 (2007), no. 1-2, 61–73. MR 2304270, DOI 10.1007/s10915-006-9107-7
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Leandro M. Del Pezzo, Ariel L. Lombardi, and Sandra Martínez, Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian, SIAM J. Numer. Anal. 50 (2012), no. 5, 2497–2521. MR 3022228, DOI 10.1137/110820324
- Daniele A. Di Pietro and Jérôme Droniou, A third Strang lemma and an Aubin-Nitsche trick for schemes in fully discrete formulation, Calcolo 55 (2018), no. 3, Paper No. 40, 39. MR 3850320, DOI 10.1007/s10092-018-0282-3
- Daniele Antonio Di Pietro and Jérôme Droniou, The hybrid high-order method for polytopal meshes, MS&A. Modeling, Simulation and Applications, vol. 19, Springer, Cham, [2020] ©2020. Design, analysis, and applications. MR 4230986, DOI 10.1007/978-3-030-37203-3
- Daniele A. Di Pietro and Jérôme Droniou, A polytopal method for the Brinkman problem robust in all regimes, Comput. Methods Appl. Mech. Engrg. 409 (2023), Paper No. 115981, 23. MR 4558869, DOI 10.1016/j.cma.2023.115981
- Daniele A. Di Pietro, Jérôme Droniou, and Jia Jia Qian, A pressure-robust discrete de Rham scheme for the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 421 (2024), Paper No. 116765, 21. MR 4690519, DOI 10.1016/j.cma.2024.116765
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Daniele A. Di Pietro, Alexandre Ern, Alexander Linke, and Friedhelm Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg. 306 (2016), 175–195. MR 3502564, DOI 10.1016/j.cma.2016.03.033
- Derk Frerichs and Christian Merdon, Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem, IMA J. Numer. Anal. 42 (2022), no. 1, 597–619. MR 4367665, DOI 10.1093/imanum/draa073
- Volker John, Alexander Linke, Christian Merdon, Michael Neilan, and Leo G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev. 59 (2017), no. 3, 492–544. MR 3683678, DOI 10.1137/15M1047696
- Keegan L. A. Kirk and Sander Rhebergen, Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations, J. Sci. Comput. 81 (2019), no. 2, 881–897. MR 4019980, DOI 10.1007/s10915-019-01040-y
- Christian Kreuzer, Rüdiger Verfürth, and Pietro Zanotti, Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators, Comput. Methods Appl. Math. 21 (2021), no. 2, 423–443. MR 4235807, DOI 10.1515/cmam-2020-0023
- Christian Kreuzer and Pietro Zanotti, Quasi-optimal and pressure-robust discretizations of the Stokes equations by new augmented Lagrangian formulations, IMA J. Numer. Anal. 40 (2020), no. 4, 2553–2583. MR 4167055, DOI 10.1093/imanum/drz044
- Philip L. Lederer, Alexander Linke, Christian Merdon, and Joachim Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal. 55 (2017), no. 3, 1291–1314. MR 3656505, DOI 10.1137/16M1089964
- Christoph Lehrenfeld and Joachim Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg. 307 (2016), 339–361. MR 3511719, DOI 10.1016/j.cma.2016.04.025
- A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 311 (2016), 304–326. MR 3564690, DOI 10.1016/j.cma.2016.08.018
- Alexander Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg. 268 (2014), 782–800. MR 3133522, DOI 10.1016/j.cma.2013.10.011
- Sander Rhebergen and Garth N. Wells, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput. 76 (2018), no. 3, 1484–1501. MR 3833698, DOI 10.1007/s10915-018-0671-4
- Junping Wang and Xiu Ye, New finite element methods in computational fluid dynamics by $H(\rm div)$ elements, SIAM J. Numer. Anal. 45 (2007), no. 3, 1269–1286. MR 2318812, DOI 10.1137/060649227
- Jikun Zhao, Bei Zhang, Shipeng Mao, and Shaochun Chen, The nonconforming virtual element method for the Darcy-Stokes problem, Comput. Methods Appl. Mech. Engrg. 370 (2020), 113251, 23. MR 4121079, DOI 10.1016/j.cma.2020.113251
Bibliographic Information
- Lorenzo Botti
- Affiliation: Dipartimento di Ingegneria e Scienze Applicate, Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine, Bergamo, Italy
- MR Author ID: 921215
- ORCID: 0000-0002-0511-9022
- Email: lorenzo.botti@unibg.it
- Michele Botti
- Affiliation: MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
- MR Author ID: 1162249
- ORCID: 0000-0003-1171-2874
- Email: michele.botti@polimi.it
- Daniele A. Di Pietro
- Affiliation: IMAG, Univ. Montpellier, CNRS, Montpellier, France
- MR Author ID: 790640
- ORCID: 0000-0003-0959-8830
- Email: daniele.di-pietro@umontpellier.fr
- Francesco Carlo Massa
- Affiliation: Dipartimento di Ingegneria e Scienze Applicate, Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine, Bergamo, Italy
- MR Author ID: 1120078
- ORCID: 0000-0002-1925-4938
- Email: francescocarlo.massa@unibg.it
- Received by editor(s): May 3, 2024
- Received by editor(s) in revised form: September 13, 2024
- Published electronically: January 22, 2025
- Additional Notes: This work was funded by the European Union (ERC Synergy, NEMESIS, project number 101115663). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65N30, 65N12, 35Q30, 76D07
- DOI: https://doi.org/10.1090/mcom/4049