On the sign changes of $\psi (x)-x$
HTML articles powered by AMS MathViewer
- by Maciej Grześkowiak, Jerzy Kaczorowski, Łukasz Pańkowski and Maciej Radziejewski;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4053
- Published electronically: January 27, 2025
- HTML | PDF | Request permission
Abstract:
We improve the lower bound for $V(T)$, the number of sign changes of the error term $\psi (x)-x$ in the Prime Number Theorem in the interval $[1,T]$ for large $T$. We show that \[ \liminf _{T\to \infty }\frac {V(T)}{\log T}\geq \frac {\gamma _{0}}{\pi }+\frac {1}{60}, \] where $\gamma _{0}=14.13\ldots$ is the imaginary part of the lowest-lying non-trivial zero of the Riemann zeta-function. The result is based on a new density estimate for zeros of the associated $k$-function, over $4\cdot 10^{21}$ times better than previously known estimates of this type.References
- Yong-Gao Chen, The best quantitative Kronecker’s theorem, J. London Math. Soc. (2) 61 (2000), no. 3, 691–705. MR 1766098, DOI 10.1112/S0024610700008772
- J. W. S. Cassels, An introduction to the geometry of numbers, Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971. Second printing, corrected. MR 306130
- The FLINT Team, FLINT: Fast Library for Number Theory, Version 3.0.0, 2023, https://flintlib.org.
- Steven M. Gonek and Hugh L. Montgomery, Kronecker’s approximation theorem, Indag. Math. (N.S.) 27 (2016), no. 2, 506–523. MR 3479169, DOI 10.1016/j.indag.2016.02.002
- M. Grześkowiak, J. Kaczorowski, Ł. Pańkowski, and M. Radziejewski, https://github.com/maciej-radziejewski/sign-changes.
- Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, An introduction to mathematical cryptography, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 2014. MR 3289167, DOI 10.1007/978-1-4939-1711-2
- A. E. Ingham, A note on the distribution of primes, Acta Arith. 1 (1936), 201–211.
- Fredrik Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017), no. 8, 1281–1292. MR 3681746, DOI 10.1109/TC.2017.2690633
- J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. I, Acta Arith. 44 (1984), no. 4, 365–377. MR 777013, DOI 10.4064/aa-44-4-365-377
- J. Kaczorowski, On sign-changes in the remainder-term of the prime-number formula. II, Acta Arith. 45 (1985), no. 1, 65–74. MR 791085, DOI 10.4064/aa-45-1-65-74
- J. Kaczorowski, The $k$-functions in multiplicative number theory. I. On complex explicit formulae, Acta Arith. 56 (1990), no. 3, 195–211. MR 1083000, DOI 10.4064/aa-56-3-195-211
- Jerzy Kaczorowski, Boundary values of Dirichlet series and the distribution of primes, European Congress of Mathematics, Vol. I (Budapest, 1996) Progr. Math., vol. 168, Birkhäuser, Basel, 1998, pp. 237–254. MR 1645811, DOI 10.1007/978-3-0348-8974-2_{1}8
- A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, De Gruyter Expositions in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1992. Translated from the Russian by Neal Koblitz. MR 1183467, DOI 10.1515/9783110886146
- R. Sherman Lehman, On the difference $\pi (x)-\textrm {li}(x)$, Acta Arith. 11 (1966), 397–410. MR 202686, DOI 10.4064/aa-11-4-397-410
- Hugh L. Montgomery, Extreme values of the Riemann zeta function, Comment. Math. Helv. 52 (1977), no. 4, 511–518. MR 460255, DOI 10.1007/BF02567383
- Thomas Morrill, Dave Platt, and Tim Trudgian, Sign changes in the prime number theorem, Ramanujan J. 57 (2022), no. 1, 165–173. MR 4360480, DOI 10.1007/s11139-021-00398-8
- A. Odlyzko, Tables of zeros of the Riemann zeta function, https://www-users.cse.umn.edu/~odlyzko/zeta_tables/.
- Dave Platt and Tim Trudgian, The Riemann hypothesis is true up to $3\cdot 10^{12}$, Bull. Lond. Math. Soc. 53 (2021), no. 3, 792–797. MR 4275089, DOI 10.1112/blms.12460
- G. Pólya, Über das Vorzeichen des Restgliedes im Primzahlsatz, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 233–244 (German). MR 263757
- Aurel Wintner, On the Asymptotic Distribution of the Remainder Term of the Prime-Number Theorem, Amer. J. Math. 57 (1935), no. 3, 534–538. MR 1507933, DOI 10.2307/2371183
Bibliographic Information
- Maciej Grześkowiak
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, 61-614 Poznań, Poland
- ORCID: 0000-0002-9767-2879
- Email: maciejg@amu.edu.pl
- Jerzy Kaczorowski
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, 61-614 Poznań, Poland
- MR Author ID: 96610
- ORCID: 0000-0003-1045-122X
- Email: kjerzy@amu.edu.pl
- Łukasz Pańkowski
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, 61-614 Poznań, Poland
- Email: lpan@amu.edu.pl
- Maciej Radziejewski
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, 61-614 Poznań, Poland
- MR Author ID: 688170
- ORCID: 0000-0001-8568-7494
- Email: maciejr@amu.edu.pl
- Received by editor(s): September 9, 2024
- Received by editor(s) in revised form: November 5, 2024
- Published electronically: January 27, 2025
- Additional Notes: This research was partially supported by grant 2021/41/B/ST1/00241 from the National Science Centre, Poland.
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 11M26, 11N05, 42A75
- DOI: https://doi.org/10.1090/mcom/4053