Quadrature rules for splines of high smoothness on uniformly refined triangles
HTML articles powered by AMS MathViewer
- by Salah Eddargani, Carla Manni and Hendrik Speleers;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4058
- Published electronically: February 3, 2025
- HTML | PDF | Request permission
Abstract:
In this paper, we identify families of quadrature rules that are exact for sufficiently smooth spline spaces on uniformly refined triangles in $\mathbb {R}^2$. Given any symmetric quadrature rule on a triangle $T$ that is exact for polynomials of a specific degree $d$, we investigate if it remains exact for sufficiently smooth splines of the same degree $d$ defined on the Clough–Tocher 3-split or the (uniform) Powell–Sabin 6-split of $T$. We show that this is always true for $C^{2r-1}$ splines having degree $d=3r$ on the former split or $d=2r$ on the latter split, for any positive integer $r$. Our analysis is based on the representation of the considered spline spaces in terms of suitable simplex splines.References
- P. Alfeld, A trivariate Clough–Tocher scheme for tetrahedral data, Comput. Aided Geom. Design 1 (1984), 169–181.
- Michael Bartoň and Victor Manuel Calo, Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 305 (2016), 217–240. MR 3491932, DOI 10.1016/j.cma.2016.02.034
- Michael Bartoň and Jiří Kosinka, On numerical quadrature for $C^1$ quadratic Powell-Sabin 6-split macro-triangles, J. Comput. Appl. Math. 349 (2019), 239–250. MR 3886710, DOI 10.1016/j.cam.2018.07.051
- Michael Bartoň, Vladimir Puzyrev, Quanling Deng, and Victor Calo, Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for B-splines, J. Comput. Appl. Math. 371 (2020), 112626, 11. MR 4057584, DOI 10.1016/j.cam.2019.112626
- Francesco Calabrò, Gabriele Loli, Giancarlo Sangalli, and Mattia Tani, Quadrature rules in the isogeometric Galerkin method: state of the art and an introduction to weighted quadrature, Advanced methods for geometric modeling and numerical simulation, Springer INdAM Ser., vol. 35, Springer, Cham, 2019, pp. 43–55. MR 3971350
- F. Calabrò, G. Sangalli, and M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, Comput. Methods Appl. Mech. Engrg. 316 (2017), 606–622. MR 3610113, DOI 10.1016/j.cma.2016.09.013
- R. W. Clough and J. L. Tocher, Finite Element Stiffness Matrices for Analysis of Plates in Bending, Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, 1965, pp. 515–545.
- Ronald Cools, An encyclopaedia of cubature formulas, J. Complexity 19 (2003), no. 3, 445–453. Numerical integration and its complexity (Oberwolfach, 2001). MR 1984127, DOI 10.1016/S0885-064X(03)00011-6
- J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs, Isogeometric analysis, John Wiley & Sons, Ltd., Chichester, 2009. Toward integration of CAD and FEA. MR 3618875, DOI 10.1002/9780470749081
- G. R. Cowper, Gaussian quadrature formulas for triangles, Internat. J. Numer. Methods Engrg. 7 (1972), 405–408.
- Salah Eddargani, Tom Lyche, Carla Manni, and Hendrik Speleers, Quadrature rules for $C^1$ quadratic spline finite elements on the Powell-Sabin 12-split, Comput. Methods Appl. Mech. Engrg. 430 (2024), Paper No. 117196, 32. MR 4777737, DOI 10.1016/j.cma.2024.117196
- Brian A. Freno, William A. Johnson, Brian F. Zinser, and Salvatore Campione, Symmetric triangle quadrature rules for arbitrary functions, Comput. Math. Appl. 79 (2020), no. 10, 2885–2896. MR 4083025, DOI 10.1016/j.camwa.2019.12.021
- Preston C. Hammer and Arthur H. Stroud, Numerical integration over simplexes, Math. Tables Aids Comput. 10 (1956), 137–139. MR 86390, DOI 10.1090/S0025-5718-1956-0086390-2
- René R. Hiemstra, Francesco Calabrò, Dominik Schillinger, and Thomas J. R. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 316 (2017), 966–1004. MR 3610127, DOI 10.1016/j.cma.2016.10.049
- D. V. Hutton, Fundamentals of Finite Element Analysis, McGraw-Hill, New York, 2004.
- Noah Jaxon and Xiaoping Qian, Isogeometric analysis on triangulations, Comput.-Aided Des. 46 (2014), 45–57. MR 3124175, DOI 10.1016/j.cad.2013.08.017
- Alexei Kolesnikov and Tatyana Sorokina, Multivariate $C^1$-continuous splines on the Alfeld split of a simplex, Approximation theory XIV: San Antonio 2013, Springer Proc. Math. Stat., vol. 83, Springer, Cham, 2014, pp. 283–294. MR 3218582, DOI 10.1007/978-3-319-06404-8_{1}6
- Jiří Kosinka and Michael Bartoň, Gaussian quadrature for $C^1$ cubic Clough-Tocher macro-triangles, J. Comput. Appl. Math. 351 (2019), 6–13. MR 3880174, DOI 10.1016/j.cam.2018.10.036
- G. Lague and R. Baldur, Extended numerical integration method for triangular surfaces, Internat. J. Numer. Methods Engrg. 11 (1977), 388–392.
- Ming-Jun Lai and Larry L. Schumaker, Spline functions on triangulations, Encyclopedia of Mathematics and its Applications, vol. 110, Cambridge University Press, Cambridge, 2007. MR 2355272, DOI 10.1017/CBO9780511721588
- John M. Leone Jr., Philip M. Gresho, Stevens T. Chan, and Robert L. Lee, A note on the accuracy of Gauss-Legendre quadrature in the finite element method, Internat. J. Numer. Methods Engrg. 14 (1979), no. 5, 769–773. MR 530918, DOI 10.1002/nme.1620140510
- Tom Lyche and Jean-Louis Merrien, Simplex-splines on the Clough-Tocher element, Comput. Aided Geom. Design 65 (2018), 76–92. MR 3849068, DOI 10.1016/j.cagd.2018.07.004
- T. Lyche, J.-L. Merrien, and H. Speleers, A $C^1$ simplex-spline basis for the Alfeld split in $\mathbb {R}^s$, Comput. Aided Geom. Design (2025), Paper no. 102412, DOI 10.1016/j.cagd.2025.102412
- C. Manni and T. Sorokina, Bernstein-Bézier form and its role in studying multivariate splines, Approximation Theory and Numerical Analysis Meet Algebra, Geometry, Topology, Springer INdAM Ser., vol. 60, Springer, Singapore, 2024, pp. 45–70, DOI 10.1007/978-981-97-6508-9_2
- Charles A. Micchelli, On a numerically efficient method for computing multivariate $B$-splines, Multivariate approximation theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser Verlag, Basel-Boston, Mass., 1979, pp. 211–248. MR 560673
- Stefanos-Aldo Papanicolopulos, Computation of moderate-degree fully-symmetric cubature rules on the triangle using symmetric polynomials and algebraic solving, Comput. Math. Appl. 69 (2015), no. 7, 650–666. MR 3320278, DOI 10.1016/j.camwa.2015.02.014
- M. J. D. Powell and M. A. Sabin, Piecewise quadratic approximations on triangles, ACM Trans. Math. Software 3 (1977), no. 4, 316–325. MR 483304, DOI 10.1145/355759.355761
- H. T. Rathod, B. Venkatesudu, K. V. Nagaraja, and Md. Shafiqul Islam, Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region, Appl. Math. Comput. 190 (2007), no. 1, 186–194. MR 2335439, DOI 10.1016/j.amc.2007.01.014
- Jayan Sarada and K. V. Nagaraja, Generalized Gaussian quadrature rules over two-dimensional regions with linear sides, Appl. Math. Comput. 217 (2011), no. 12, 5612–5621. MR 2770181, DOI 10.1016/j.amc.2010.12.039
- Hendrik Speleers and Carla Manni, Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines, J. Comput. Appl. Math. 289 (2015), 68–86. MR 3350762, DOI 10.1016/j.cam.2015.03.024
- Hendrik Speleers, Carla Manni, and Francesca Pelosi, From NURBS to NURPS geometries, Comput. Methods Appl. Mech. Engrg. 255 (2013), 238–254. MR 3029037, DOI 10.1016/j.cma.2012.11.012
- S. Wandzura and H. Xiao, Symmetric quadrature rules on a triangle, Comput. Math. Appl. 45 (2003), no. 12, 1829–1840. MR 1995755, DOI 10.1016/S0898-1221(03)90004-6
- A. J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant, Comput. Aided Geom. Design 5 (1988), no. 3, 177–186. MR 959603, DOI 10.1016/0167-8396(88)90001-5
Bibliographic Information
- Salah Eddargani
- Affiliation: Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- MR Author ID: 1296970
- ORCID: 0000-0003-4550-1776
- Email: eddargani@mat.uniroma2.it
- Carla Manni
- Affiliation: Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- MR Author ID: 119310
- ORCID: 0000-0002-1519-4106
- Email: manni@mat.uniroma2.it
- Hendrik Speleers
- Affiliation: Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- MR Author ID: 778374
- ORCID: 0000-0003-4110-3308
- Email: speleers@mat.uniroma2.it
- Received by editor(s): September 2, 2024
- Received by editor(s) in revised form: November 26, 2024, and December 3, 2024
- Published electronically: February 3, 2025
- Additional Notes: The authors are members of the research group GNCS (Gruppo Nazionale per il Calcolo Scientifico) of INdAM (Istituto Nazionale di Alta Matematica). This work was supported by the MUR Excellence Department Project MatMod@TOV (CUP E83C23000330006) awarded to the Department of Mathematics of the University of Rome Tor Vergata, by a Project of Relevant National Interest (PRIN) under the National Recovery and Resilience Plan (PNRR) funded by the European Union – Next Generation EU (CUP E53D23017910001), by the Italian Research Center in High Performance Computing, Big Data and Quantum Computing (CUP E83C22003230001), and by a GNCS project (CUP E53C23001670001).
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65D07, 65D32; Secondary 41A15, 41A55
- DOI: https://doi.org/10.1090/mcom/4058