Mass lumping and outlier removal strategies for complex geometries in isogeometric analysis
HTML articles powered by AMS MathViewer
- by Yannis Voet, Espen Sande and Annalisa Buffa;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4060
- Published electronically: February 11, 2025
- HTML | PDF | Request permission
Abstract:
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called “outlier” frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the Courant-Friedrichs-Lewy condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.References
- T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 39-41, 4135–4195. MR 2152382, DOI 10.1016/j.cma.2004.10.008
- J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs, Isogeometric analysis, John Wiley & Sons, Ltd., Chichester, 2009. Toward integration of CAD and FEA. MR 3618875, DOI 10.1002/9780470749081
- Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for $h$-refined meshes, Math. Models Methods Appl. Sci. 16 (2006), no. 7, 1031–1090. MR 2250029, DOI 10.1142/S0218202506001455
- Andrea Bressan and Espen Sande, Approximation in FEM, DG and IGA: a theoretical comparison, Numer. Math. 143 (2019), no. 4, 923–942. MR 4026376, DOI 10.1007/s00211-019-01063-5
- Espen Sande, Carla Manni, and Hendrik Speleers, Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis, Numer. Math. 144 (2020), no. 4, 889–929. MR 4080513, DOI 10.1007/s00211-019-01097-9
- J. A. Cottrell, A. Reali, Y. Bazilevs, and T. J. R. Hughes, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5257–5296. MR 2243311, DOI 10.1016/j.cma.2005.09.027
- T. J. R. Hughes, A. Reali, and G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of $p$-method finite elements with $k$-method NURBS, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4104–4124. MR 2463659, DOI 10.1016/j.cma.2008.04.006
- Thomas J. R. Hughes, John A. Evans, and Alessandro Reali, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg. 272 (2014), 290–320. MR 3171285, DOI 10.1016/j.cma.2013.11.012
- D. Gallistl, P. Huber, and D. Peterseim, On the stability of the Rayleigh-Ritz method for eigenvalues, Numer. Math. 137 (2017), no. 2, 339–351. MR 3696083, DOI 10.1007/s00211-017-0876-8
- Thomas J. R. Hughes, The finite element method, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987. Linear static and dynamic finite element analysis; With the collaboration of Robert M. Ferencz and Arthur M. Raefsky. MR 1008473
- K. J. Bathe, Finite Element Procedures, 2006.
- René R. Hiemstra, Thomas J. R. Hughes, Alessandro Reali, and Dominik Schillinger, Removal of spurious outlier frequencies and modes from isogeometric discretizations of second- and fourth-order problems in one, two, and three dimensions, Comput. Methods Appl. Mech. Engrg. 387 (2021), Paper No. 114115, 43. MR 4317408, DOI 10.1016/j.cma.2021.114115
- Jesse Chan and John A. Evans, Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion, Comput. Methods Appl. Mech. Engrg. 333 (2018), 22–54. MR 3771886, DOI 10.1016/j.cma.2018.01.022
- Espen Sande, Carla Manni, and Hendrik Speleers, Sharp error estimates for spline approximation: explicit constants, $n$-widths, and eigenfunction convergence, Math. Models Methods Appl. Sci. 29 (2019), no. 6, 1175–1205. MR 3963638, DOI 10.1142/S0218202519500192
- Michael S. Floater and Espen Sande, Optimal spline spaces for $L^2$ $n$-width problems with boundary conditions, Constr. Approx. 50 (2019), no. 1, 1–18. MR 3975879, DOI 10.1007/s00365-018-9427-5
- Carla Manni, Espen Sande, and Hendrik Speleers, Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations, Comput. Methods Appl. Mech. Engrg. 389 (2022), Paper No. 114260, 38. MR 4366245, DOI 10.1016/j.cma.2021.114260
- Stefan Takacs and Thomas Takacs, Approximation error estimates and inverse inequalities for B-splines of maximum smoothness, Math. Models Methods Appl. Sci. 26 (2016), no. 7, 1411–1445. MR 3494682, DOI 10.1142/S0218202516500342
- Jarle Sogn and Stefan Takacs, Robust multigrid solvers for the biharmonic problem in isogeometric analysis, Comput. Math. Appl. 77 (2019), no. 1, 105–124. MR 3907405, DOI 10.1016/j.camwa.2018.09.017
- Michael S. Floater and Espen Sande, Optimal spline spaces of higher degree for $L^2$ $n$-widths, J. Approx. Theory 216 (2017), 1–15. MR 3612481, DOI 10.1016/j.jat.2016.12.002
- Carla Manni, Espen Sande, and Hendrik Speleers, Outlier-free spline spaces for isogeometric discretizations of biharmonic and polyharmonic eigenvalue problems. part B, Comput. Methods Appl. Mech. Engrg. 417 (2023), no. part B, Paper No. 116314, 33. MR 4668245, DOI 10.1016/j.cma.2023.116314
- Deepesh Toshniwal, Hendrik Speleers, René R. Hiemstra, Carla Manni, and Thomas J. R. Hughes, Multi-degree B-splines: algorithmic computation and properties, Comput. Aided Geom. Design 76 (2020), 101792, 16. MR 4034689, DOI 10.1016/j.cagd.2019.101792
- Quanling Deng and Victor M. Calo, A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes, Comput. Methods Appl. Mech. Engrg. 383 (2021), Paper No. 113907, 19. MR 4258737, DOI 10.1016/j.cma.2021.113907
- Thi-Hoa Nguyen, René R. Hiemstra, Stein K. F. Stoter, and Dominik Schillinger, A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations, Comput. Methods Appl. Mech. Engrg. 392 (2022), Paper No. 114671, 27. MR 4379784, DOI 10.1016/j.cma.2022.114671
- R. W. Macek and B. H. Aubert, A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses, Earthquake Eng. Struct. Dyn. 24 (1995), no. 10, 1315–1331.
- L. Olovsson, K. Simonsson, and M. Unosson, Selective mass scaling for explicit finite element analyses, Internat. J. Numer. Methods Engrg. 63 (2005), no. 10, 1436–1445.
- Stein K. F. Stoter, Thi-Hoa Nguyen, René R. Hiemstra, and Dominik Schillinger, Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods, Comput. Methods Appl. Mech. Engrg. 399 (2022), Paper No. 115310, 23. MR 4452702, DOI 10.1016/j.cma.2022.115310
- Anton Tkachuk and Manfred Bischoff, Local and global strategies for optimal selective mass scaling, Comput. Mech. 53 (2014), no. 6, 1197–1207. MR 3201934, DOI 10.1007/s00466-013-0961-5
- José A. González and K. C. Park, Large-step explicit time integration via mass matrix tailoring, Internat. J. Numer. Methods Engrg. 121 (2020), no. 8, 1647–1664. MR 4161186, DOI 10.1002/nme.6282
- Nathan Collier, David Pardo, Lisandro Dalcin, Maciej Paszynski, and V. M. Calo, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg. 213/216 (2012), 353–361. MR 2880524, DOI 10.1016/j.cma.2011.11.002
- Nathan Collier, Lisandro Dalcin, David Pardo, and V. M. Calo, The cost of continuity: performance of iterative solvers on isogeometric finite elements, SIAM J. Sci. Comput. 35 (2013), no. 2, A767–A784. MR 3035485, DOI 10.1137/120881038
- O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals, 7th ed., Elsevier/Butterworth Heinemann, Amsterdam, 2013. MR 3292660, DOI 10.1016/B978-1-85617-633-0.00001-0
- Yannis Voet, Espen Sande, and Annalisa Buffa, A mathematical theory for mass lumping and its generalization with applications to isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 410 (2023), Paper No. 116033, 31. MR 4570246, DOI 10.1016/j.cma.2023.116033
- Cosmin Anitescu, Chuong Nguyen, Timon Rabczuk, and Xiaoying Zhuang, Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation, Comput. Methods Appl. Mech. Engrg. 346 (2019), 574–591. MR 3894171, DOI 10.1016/j.cma.2018.12.002
- Thi-Hoa Nguyen, René R. Hiemstra, Sascha Eisenträger, and Dominik Schillinger, Towards higher-order accurate mass lumping in explicit isogeometric analysis for structural dynamics. part B, Comput. Methods Appl. Mech. Engrg. 417 (2023), no. part B, Paper No. 116233, 32. MR 4668231, DOI 10.1016/j.cma.2023.116233
- R. R. Hiemstra, T.-H. Nguyen, S. Eisentrager, W. Dornisch, and D. Schillinger, Higher order accurate mass lumping for explicit isogeometric methods based on approximate dual basis functions, Preprint, arXiv:2310.13379, 2023.
- Benjamin Marussig and Thomas J. R. Hughes, A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng. 25 (2018), no. 4, 1059–1127. MR 3867694, DOI 10.1007/s11831-017-9220-9
- L. Leidinger, Explicit isogeometric B-Rep analysis for nonlinear dynamic crash simulations, Ph.D. Thesis, Technische Universität München, 2020.
- L. Coradello, Accurate isogeometric methods for trimmed shell structures, Ph.D. Thesis, École polytechnique fédérale de Lausanne, 2021.
- Stein K. F. Stoter, Sai C. Divi, E. Harald van Brummelen, Mats G. Larson, Frits de Prenter, and Clemens V. Verhoosel, Critical time-step size analysis and mass scaling by ghost-penalty for immersogeometric explicit dynamics, Comput. Methods Appl. Mech. Engrg. 412 (2023), Paper No. 116074, 33. MR 4584920, DOI 10.1016/j.cma.2023.116074
- Lars Radtke, Michele Torre, Thomas J. R. Hughes, Alexander Düster, Giancarlo Sangalli, and Alessandro Reali, An analysis of high order FEM and IGA for explicit dynamics: mass lumping and immersed boundaries, Internat. J. Numer. Methods Engrg. 125 (2024), no. 16, Paper No. e7499, 41. MR 4781404, DOI 10.1002/nme.7499
- Alfio Quarteroni, Numerical models for differential problems, MS&A. Modeling, Simulation and Applications, vol. 2, Springer-Verlag Italia, Milan, 2009. Translated from the 4th (2008) Italian edition by Silvia Quarteroni. MR 2522375, DOI 10.1007/978-88-470-1071-0
- L. F. Leidinger, M. Breitenberger, A. M. Bauer, S. Hartmann, R. Wüchner, K.-U. Bletzinger, F. Duddeck, and L. Song, Explicit dynamic isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg. 351 (2019), 891–927. MR 3946323, DOI 10.1016/j.cma.2019.04.016
- Frits de Prenter, Clemens V. Verhoosel, E. Harald van Brummelen, Mats G. Larson, and Santiago Badia, Stability and conditioning of immersed finite element methods: analysis and remedies, Arch. Comput. Methods Eng. 30 (2023), no. 6, 3617–3656. MR 4607670, DOI 10.1007/s11831-023-09913-0
- Ulrike von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (2007), no. 4, 395–416. MR 2409803, DOI 10.1007/s11222-007-9033-z
- Clemens Hofreither, A black-box low-rank approximation algorithm for fast matrix assembly in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 333 (2018), 311–330. MR 3771898, DOI 10.1016/j.cma.2018.01.014
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR 3024913, DOI 10.56021/9781421407944
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- T. J. Hughes, K. S. Pister, and R. L. Taylor, Implicit-explicit finite elements in nonlinear transient analysis, Comput. Methods Appl. Mech. Engrg. 17 (1979), 159–182.
- B. Irons and G. Treharne, A bound theorem in eigenvalues and its practical applications, Proceedings of the Third Conference on Matrix Methods in Structural Mechanics, Wright Patterson Air Force Base, Ohio, 1971, pp. 245–254.
- A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal. 7 (1987), no. 4, 449–457. MR 968517, DOI 10.1093/imanum/7.4.449
- Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar, A survey of direct methods for sparse linear systems, Acta Numer. 25 (2016), 383–566. MR 3509211, DOI 10.1017/S0962492916000076
- Timothy A. Davis, Direct methods for sparse linear systems, Fundamentals of Algorithms, vol. 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. MR 2270673, DOI 10.1137/1.9780898718881
- Michele Benzi, Gene H. Golub, and Jörg Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1–137. MR 2168342, DOI 10.1017/S0962492904000212
- G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154
- Beresford N. Parlett, The symmetric eigenvalue problem, Classics in Applied Mathematics, vol. 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. MR 1490034, DOI 10.1137/1.9781611971163
- Harold Hotelling, Some new methods in matrix calculation, Ann. Math. Statistics 14 (1943), 1–34. MR 7851, DOI 10.1214/aoms/1177731489
- Yousef Saad, Numerical methods for large eigenvalue problems, Classics in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Revised edition of the 1992 original [ 1177405]. MR 3396212, DOI 10.1137/1.9781611970739.ch1
- Max A. Woodbury, Inverting modified matrices, Princeton University, Princeton, NJ, 1950. Statistical Research Group, Memo. Rep. no. 42,. MR 38136
- G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl. 23 (2001/02), no. 3, 601–614. MR 1896808, DOI 10.1137/S0895479800371529
- Kesheng Wu and Horst Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl. 22 (2000), no. 2, 602–616. MR 1781506, DOI 10.1137/S0895479898334605
- Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J. Numer. Anal. 17 (1980), no. 5, 687–706. MR 588755, DOI 10.1137/0717059
- S. Eisenträger, L. Radtke, W. Garhuom, S. Löhnert, A. Düster, D. Juhre, and D. Schillinger, An eigenvalue stabilization technique for immersed boundary finite element methods in explicit dynamics, Comput. Math. Appl. 166 (2024), 129–168. MR 4744096, DOI 10.1016/j.camwa.2024.04.008
- R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl. 72 (2016), no. 3, 523–554. MR 3521056, DOI 10.1016/j.camwa.2016.05.010
- F. de Prenter, C. V. Verhoosel, G. J. van Zwieten, and E. H. van Brummelen, Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg. 316 (2017), 297–327. MR 3610101, DOI 10.1016/j.cma.2016.07.006
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Pierre Grisvard, Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original [ MR0775683]; With a foreword by Susanne C. Brenner. MR 3396210, DOI 10.1137/1.9781611972030.ch1
- Gilbert Strang and George Fix, An analysis of the finite element method, 2nd ed., Wellesley-Cambridge Press, Wellesley, MA, 2008. MR 2743037
- Longfei Gao and Victor M. Calo, Fast isogeometric solvers for explicit dynamics, Comput. Methods Appl. Mech. Engrg. 274 (2014), 19–41. MR 3196805, DOI 10.1016/j.cma.2014.01.023
- Maciej Woźniak, Marcin Łoś, Maciej Paszyński, Lisandro Dalcin, and Victor Manuel Calo, Parallel fast isogeometric solvers for explicit dynamics, Comput. Inform. 36 (2017), no. 2, 423–448. MR 3700665, DOI 10.4149/cai_{2}017_{2}_{4}23
- Gabriele Loli, Giancarlo Sangalli, and Mattia Tani, Easy and efficient preconditioning of the isogeometric mass matrix, Comput. Math. Appl. 116 (2022), 245–264. MR 4441220, DOI 10.1016/j.camwa.2020.12.009
- E. L. Yip, A note on the stability of solving a rank-$p$ modification of a linear system by the Sherman-Morrison-Woodbury formula, SIAM J. Sci. Statist. Comput. 7 (1986), no. 2, 507–513. MR 833918, DOI 10.1137/0907034
Bibliographic Information
- Yannis Voet
- Affiliation: MNS, Institute of Mathematics, École polytechnique fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1525168
- ORCID: 0000-0002-4017-9792
- Email: yannis.voet@epfl.ch
- Espen Sande
- Affiliation: MNS, Institute of Mathematics, École polytechnique fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1199912
- ORCID: 0000-0003-0863-1096
- Email: espen.sande@epfl.ch
- Annalisa Buffa
- Affiliation: MNS, Institute of Mathematics, École polytechnique fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 631793
- Email: annalisa.buffa@epfl.ch
- Received by editor(s): February 21, 2024
- Received by editor(s) in revised form: September 8, 2024, and November 19, 2024
- Published electronically: February 11, 2025
- Additional Notes: The second author was supported by the SNSF through the project “Smoothness in Higher Order Numerical Methods” n. TMPFP2_209868 (SNSF Swiss Postdoctoral Fellowship 2021). The third author was supported by SNSF through the project “PDE tools for analysis-aware geometry processing in simulation science” n. 200021_215099.
The first author is the corresponding author - © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65M60, 65F15
- DOI: https://doi.org/10.1090/mcom/4060