Computing the spectrum and pseudospectrum of infinite-volume operators from local patches
HTML articles powered by AMS MathViewer
- by Paul Hege, Massimo Moscolari and Stefan Teufel;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4075
- Published electronically: February 21, 2025
- HTML | PDF | Request permission
Abstract:
We show how the spectrum of normal discrete short-range infinite-volume operators can be approximated with two-sided error control using only data from finite-sized local patches. As a corollary, we prove the computability of the spectrum of such infinite-volume operators with the additional property of finite local complexity and provide an explicit algorithm. Such operators appear in many applications, e.g. as discretizations of differential operators on unbounded domains or as so-called tight-binding Hamiltonians in solid state physics. For a large class of such operators, our result allows for the first time to establish computationally also the absence of spectrum, i.e. the existence and the size of spectral gaps. We extend our results to the $\varepsilon$-pseudospectrum of non-normal operators, proving that also the pseudospectrum of such operators is computable.References
- N. H. Abel, Mémoire sur les équations algébriques où on démontre l’impossibilité de la résolution de l’équation générale du cinquième dégré, Facsimile edition, University of Oslo, Faculty of Science, The Librarian, Oslo, 1957 (French). MR 81258
- Michael Aizenman and Simone Warzel, Random operators, Graduate Studies in Mathematics, vol. 168, American Mathematical Society, Providence, RI, 2015. Disorder effects on quantum spectra and dynamics. MR 3364516, DOI 10.1090/gsm/168
- P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), no. 5, 1492–1505.
- William Arveson, The role of $C^\ast$-algebras in infinite-dimensional numerical linear algebra, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 114–129. MR 1292012, DOI 10.1090/conm/167/1292012
- R. Band, S. Beckus, F. Pogorzelski, and L. Tenenbaum, Periodic approximation of substitution subshifts, In preparation.
- F. L. Bauer and C. T. Fike, Norms and exclusion theorems, Numer. Math. 2 (1960), 137–141. MR 118729, DOI 10.1007/BF01386217
- N. W. Bazley and D. W. Fox, Methods for lower bounds to frequencies of continuous elastic systems, Z. Angew. Math. Phys. (1966).
- Norman W. Bazley, Lower bounds for eigenvalues, J. Math. Mech. 10 (1961), 289–307. MR 128612
- Norman W. Bazley and David W. Fox, Lower bounds for eigenvalues of Schrödinger’s equation, Phys. Rev. (2) 124 (1961), 483–492. MR 142898, DOI 10.1103/PhysRev.124.483
- S. Beckus, personal communication.
- Siegfried Beckus, Jean Bellissard, and Giuseppe De Nittis, Spectral continuity for aperiodic quantum systems I. General theory, J. Funct. Anal. 275 (2018), no. 11, 2917–2977. MR 3861728, DOI 10.1016/j.jfa.2018.09.004
- Siegfried Beckus, Jean Bellissard, and Giuseppe De Nittis, Spectral continuity for aperiodic quantum systems: applications of a folklore theorem, J. Math. Phys. 61 (2020), no. 12, 123505, 19. MR 4191641, DOI 10.1063/5.0011488
- S. Beckus, T. Hartnick, and F. Pogorzelski, Symbolic substitution systems beyond abelian groups, Preprint, arXiv:2109.15210, 2021.
- Siegfried Beckus, Daniel Lenz, Marko Lindner, and Christian Seifert, On the spectrum of operator families on discrete groups over minimal dynamical systems, Math. Z. 287 (2017), no. 3-4, 993–1007. MR 3719524, DOI 10.1007/s00209-017-1856-5
- Siegfried Beckus and Felix Pogorzelski, Delone dynamical systems and spectral convergence, Ergodic Theory Dynam. Systems 40 (2020), no. 6, 1510–1544. MR 4092856, DOI 10.1017/etds.2018.116
- S. Beckus and A. Takase, Spectral estimates of dynamically-defined and amenable operator families, arXiv:2110.05763, October 2021.
- H. Behnke and F. Goerisch, Inclusions for eigenvalues of selfadjoint problems, Topics in validated computations (Oldenburg, 1993) Stud. Comput. Math., vol. 5, North-Holland, Amsterdam, 1994, pp. 277–322. MR 1318957, DOI 10.1016/0021-8502(94)90369-7
- H. Behnke and U. Mertins, Eigenwertschranken für das Problem der frei schwingenden rechteckigen Platte und Untersuchungen zum Ausweichphänomen, Z. Angew. Math. Mech. 75 (1995), no. 5, 343–363 (German, with English and German summaries). MR 1331135, DOI 10.1002/zamm.19950750504
- J. Bellissard, Spectral properties of Schrödinger’s operator with a Thue-Morse potential, Number theory and physics (Les Houches, 1989) Springer Proc. Phys., vol. 47, Springer, Berlin, 1990, pp. 140–150. MR 1058456, DOI 10.1007/978-3-642-75405-0_{1}3
- J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral properties of one-dimensional quasi-crystals, Comm. Math. Phys. 125 (1989), no. 3, 527–543. MR 1022526, DOI 10.1007/BF01218415
- Jean Bellissard, Anton Bovier, and Jean-Michel Ghez, Gap labelling theorems for one-dimensional discrete Schrödinger operators, Rev. Math. Phys. 4 (1992), no. 1, 1–37. MR 1160136, DOI 10.1142/S0129055X92000029
- J. Ben-Artzi, M. J. Colbrook, A. C. Hansen, O. Nevanlinna, and M. Seidel, Computing Spectra – On the Solvability Complexity Index Hierarchy and Towers of Algorithms, June 2020, arXiv:1508.03280.
- Jonathan Ben-Artzi, Marco Marletta, and Frank Rösler, Universal algorithms for computing spectra of periodic operators, Numer. Math. 150 (2022), no. 3, 719–767. MR 4394000, DOI 10.1007/s00211-021-01265-w
- Adnene Besbes, Michael Boshernitzan, and Daniel Lenz, Delone sets with finite local complexity: linear repetitivity versus positivity of weights, Discrete Comput. Geom. 49 (2013), no. 2, 335–347. MR 3017915, DOI 10.1007/s00454-012-9455-z
- Lenore Blum, Computing over the reals: where Turing meets Newton, Notices Amer. Math. Soc. 51 (2004), no. 9, 1024–1034. MR 2089092
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- Lenore Blum, Mike Shub, and Steve Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 1–46. MR 974426, DOI 10.1090/S0273-0979-1989-15750-9
- Albrecht Böttcher, Pseudospectra and singular values of large convolution operators, J. Integral Equations Appl. 6 (1994), no. 3, 267–301. MR 1312518, DOI 10.1216/jiea/1181075815
- Carsten Carstensen and Dietmar Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. 126 (2014), no. 1, 33–51. MR 3149071, DOI 10.1007/s00211-013-0559-z
- Carsten Carstensen and Joscha Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp. 83 (2014), no. 290, 2605–2629. MR 3246802, DOI 10.1090/S0025-5718-2014-02833-0
- Simon N. Chandler-Wilde, Ratchanikorn Chonchaiya, and Marko Lindner, On the spectra and pseudospectra of a class of non-self-adjoint random matrices and operators, Oper. Matrices 7 (2013), no. 4, 739–775. MR 3154570, DOI 10.7153/oam-07-43
- S. N. Chandler Wilde, R. Chonchaiya, and M. Lindner, Convergent spectral inclusion sets for banded matrices, PAMM 23 (2023), no. 4.
- Simon Chandler-Wilde, Ratchanikorn Chonchaiya, and Marko Lindner, On spectral inclusion sets and computing the spectra and pseudospectra of bounded linear operators, J. Spectr. Theory 14 (2024), no. 2, 719–804. MR 4757486, DOI 10.4171/jst/514
- Simon N. Chandler-Wilde and Marko Lindner, Coburn’s lemma and the finite section method for random Jacobi operators, J. Funct. Anal. 270 (2016), no. 2, 802–841. MR 3425904, DOI 10.1016/j.jfa.2015.09.019
- S. N. Chandler-Wilde, M. Lindner, and C. Seifert, Localisation of pseudospectra on discrete groups, manuscript in preparation, 2024.
- R. Chonchaiya, Computing the spectra and pseudospectra of non-self-adjoint random operators arising in mathematical physics, Ph.D. thesis, University of Reading, 2010.
- Matthew J. Colbrook, Pseudoergodic operators and periodic boundary conditions, Math. Comp. 89 (2020), no. 322, 737–766. MR 4044449, DOI 10.1090/mcom/3475
- Matthew J. Colbrook, On the computation of geometric features of spectra of linear operators on Hilbert spaces, Found. Comput. Math. 24 (2024), no. 3, 723–804. MR 4760354, DOI 10.1007/s10208-022-09598-0
- Matthew J. Colbrook and Anders C. Hansen, The foundations of spectral computations via the solvability complexity index hierarchy, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 12, 4639–4718. MR 4662300, DOI 10.4171/jems/1289
- Matthew J. Colbrook, Bogdan Roman, and Anders C. Hansen, How to compute spectra with error control, Phys. Rev. Lett. 122 (2019), no. 25, 250201, 6. MR 3980052, DOI 10.1103/PhysRevLett.122.250201
- David Damanik, Mark Embree, Anton Gorodetski, and Serguei Tcheremchantsev, The fractal dimension of the spectrum of the Fibonacci Hamiltonian, Comm. Math. Phys. 280 (2008), no. 2, 499–516. MR 2395480, DOI 10.1007/s00220-008-0451-3
- David Damanik and Jake Fillman, One-dimensional ergodic Schrödinger operators—I. General theory, Graduate Studies in Mathematics, vol. 221, American Mathematical Society, Providence, RI, [2022] ©2022. MR 4567742, DOI 10.1090/gsm/221
- D. Damanik and A. Gorodetski, Spectral properties of quasicrystals via analysis, dynamics, and geometric measure theory, 2015, Banff International Research Station, Workshop 15w5083, Final Report.
- David Damanik, Anton Gorodetski, and William Yessen, The Fibonacci Hamiltonian, Invent. Math. 206 (2016), no. 3, 629–692. MR 3573970, DOI 10.1007/s00222-016-0660-x
- E. B. Davies, A hierarchical method for obtaining eigenvalue enclosures, Math. Comp. 69 (2000), no. 232, 1435–1455. MR 1710648, DOI 10.1090/S0025-5718-00-01238-2
- Brian Davies and Yuri Safarov (eds.), Spectral theory and geometry, London Mathematical Society Lecture Note Series, vol. 273, Cambridge University Press, Cambridge, 1999. Papers from the ICMS Instructional Conference held in Edinburgh, March 30–April 9, 1998. MR 1736863, DOI 10.1017/CBO9780511566165
- E. B. Davies and M. Plum, Spectral pollution, IMA J. Numer. Anal. 24 (2004), no. 3, 417–438. MR 2068830, DOI 10.1093/imanum/24.3.417
- Mark Embree and Jake Fillman, Spectra of discrete two-dimensional periodic Schrödinger operators with small potentials, J. Spectr. Theory 9 (2019), no. 3, 1063–1087. MR 4003550, DOI 10.4171/JST/271
- J.-N. Fuchs, R. Mosseri, and J. Vidal, Landau levels in quasicrystals, Phys. Rev. B 98 (2018), no. 16, 165427.
- J.-N. Fuchs and J. Vidal, Hofstadter butterfly of a quasicrystal, Phys. Rev. B 94 (2016), no. 20, 205437.
- I. Cosma Fulga, D. Pikulin, and T. Loring, Aperiodic Weak Topological Superconductors, Phys. Rev. Lett. 116 (2016), no. 25, 257002.
- Fabian Gabel, Dennis Gallaun, Julian Großmann, Marko Lindner, and Riko Ukena, Finite sections of periodic Schrödinger operators, Operators, semigroups, algebras and function theory, Oper. Theory Adv. Appl., vol. 292, Birkhäuser/Springer, Cham, [2023] ©2023, pp. 115–144. MR 4696666, DOI 10.1007/978-3-031-38020-4_{6}
- S. Gershgorin, Über die abgrenzung der eigenwerte einer matrix, Bull. Acad. Sci. l’URSS Ser. VII. 1931 (1931), no. 6, 749–754 (Russian).
- J. Globevnik, Norm-constant analytic functions and equivalent norms, Illinois J. Math. 20 (1976), no. 3, 503–506. MR 448044, DOI 10.1215/ijm/1256049790
- Gene H. Golub and Henk A. van der Vorst, Eigenvalue computation in the 20th century, J. Comput. Appl. Math. 123 (2000), no. 1-2, 35–65. Numerical analysis 2000, Vol. III. Linear algebra. MR 1798518, DOI 10.1016/S0377-0427(00)00413-1
- B. I. Halperin, Properties of a particle in a one-dimensional random potential, Adv. Chem. Phys. 13 (1967), 123–177.
- Anders C. Hansen, On the solvability complexity index, the $n$-pseudospectrum and approximations of spectra of operators, J. Amer. Math. Soc. 24 (2011), no. 1, 81–124. MR 2726600, DOI 10.1090/S0894-0347-2010-00676-5
- Anders C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces, J. Funct. Anal. 254 (2008), no. 8, 2092–2126. MR 2402104, DOI 10.1016/j.jfa.2008.01.006
- Anders C. Hansen, Infinite-dimensional numerical linear algebra: theory and applications, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010), no. 2124, 3539–3559. MR 2734774, DOI 10.1098/rspa.2009.0617
- Anders C. Hansen and Olavi Nevanlinna, Complexity issues in computing spectra, pseudospectra and resolvents, Études opératorielles, Banach Center Publ., vol. 112, Polish Acad. Sci. Inst. Math., Warsaw, 2017, pp. 171–194. MR 3754078
- P. Hege, Spectral gaps in systems of finite local complexity, Ph.D. thesis, University of Tübingen, 2024.
- P. Hege, M. Moscolari, and S. Teufel, Finding spectral gaps in quasicrystals, Phys. Rev. B 106 (2022), no. 15, 155140.
- D. Hinrichsen and A. J. Pritchard, On spectral variations under bounded real matrix perturbations, Numer. Math. 60 (1992), no. 4, 509–524. MR 1142310, DOI 10.1007/BF01385734
- D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14 (1976), no. 6, 2239–2249.
- Jun Hu, Yunqing Huang, and Rui Ma, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput. 67 (2016), no. 3, 1181–1197. MR 3493499, DOI 10.1007/s10915-015-0126-0
- Anuradha Jagannathan, The Fibonacci quasicrystal: case study of hidden dimensions and multifractality, Rev. Modern Phys. 93 (2021), no. 4, 045001, 37. MR 4369908, DOI 10.1103/revmodphys.93.045001
- A. Jagannathan and M. Duneau, An eightfold optical quasicrystal with cold atoms, Europhy. Lett. 104 (2014), no. 6, 66003 (en).
- Tosio Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan 4 (1949), 334–339. MR 38738, DOI 10.1143/JPSJ.4.334
- S. Katsura, T. Hatta, and A. Morita, On the conception of the energy band in the perturbed periodic potential, Prog. of Theoret. Phys. 5 (1950), no. 2, 330–331.
- Johannes Kellendonk, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys. 7 (1995), no. 7, 1133–1180. MR 1359991, DOI 10.1142/S0129055X95000426
- Mahito Kohmoto, Leo P. Kadanoff, and Chao Tang, Localization problem in one dimension: mapping and escape, Phys. Rev. Lett. 50 (1983), no. 23, 1870–1872. MR 702474, DOI 10.1103/PhysRevLett.50.1870
- Evgeny Korotyaev and Natalia Saburova, Schrödinger operators on periodic discrete graphs, J. Math. Anal. Appl. 420 (2014), no. 1, 576–611. MR 3229841, DOI 10.1016/j.jmaa.2014.05.088
- J. C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1996), no. 2, 365–376. MR 1400744, DOI 10.1007/BF02102593
- J. C. Lagarias, Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom. 21 (1999), no. 2, 161–191. MR 1668082, DOI 10.1007/PL00009413
- J. C. Lagarias, Geometric models for quasicrystals. II. Local rules under isometries, Discrete Comput. Geom. 21 (1999), no. 3, 345–372. MR 1672976, DOI 10.1007/PL00009426
- H. J. Landau, On Szegő’s eigenvalue distribution theorem and non-Hermitian kernels, J. Analyse Math. 28 (1975), 335–357. MR 487600, DOI 10.1007/BF02786820
- D. Levi and O. Ragnisco, Nonlinear differential-difference equations with $N$-dependent coefficients. II, J. Phys. A 12 (1979), no. 7, L163–L167. MR 534245
- Mathieu Lewin and Éric Séré, Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators), Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 864–900. MR 2640293, DOI 10.1112/plms/pdp046
- Marko Lindner, The finite section method in the space of essentially bounded functions: an approach using limit operators, Numer. Funct. Anal. Optim. 24 (2003), no. 7-8, 863–893. MR 2011595, DOI 10.1081/NFA-120026383
- Marko Lindner, Infinite matrices and their finite sections, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. An introduction to the limit operator method. MR 2253942
- Marko Lindner and Dennis Schmeckpeper, A note on Hausdorff convergence of pseudospectra, Opuscula Math. 43 (2023), no. 1, 101–108. MR 4528181, DOI 10.7494/OpMath.2023.43.1.101
- Marko Lindner and Markus Seidel, An affirmative answer to a core issue on limit operators, J. Funct. Anal. 267 (2014), no. 3, 901–917. MR 3212726, DOI 10.1016/j.jfa.2014.03.002
- Wencai Liu, Fermi isospectrality for discrete periodic Schrödinger operators, Comm. Pure Appl. Math. 77 (2024), no. 2, 1126–1146. MR 4673878, DOI 10.1002/cpa.22161
- Xuefeng Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math. Comput. 267 (2015), 341–355. MR 3399052, DOI 10.1016/j.amc.2015.03.048
- Giovanna Marcelli, Massimo Moscolari, and Gianluca Panati, Localization of generalized Wannier bases implies Chern triviality in non-periodic insulators, Ann. Henri Poincaré 24 (2023), no. 3, 895–930. MR 4562140, DOI 10.1007/s00023-022-01232-7
- Eike Neumann and Arno Pauly, A topological view on algebraic computation models, J. Complexity 44 (2018), 1–22. MR 3724808, DOI 10.1016/j.jco.2017.08.003
- R. Penrose, Pentaplexity: a class of nonperiodic tilings of the plane, Math. Intelligencer 2 (1979/80), no. 1, 32–37. MR 558670, DOI 10.1007/BF03024384
- Michael Plum, Guaranteed numerical bounds for eigenvalues, Spectral theory and computational methods of Sturm-Liouville problems (Knoxville, TN, 1996) Lecture Notes in Pure and Appl. Math., vol. 191, Dekker, New York, 1997, pp. 313–332. MR 1460558
- Vladimir S. Rabinovich and Steffen Roch, The essential spectrum of Schrödinger operators on lattices, J. Phys. A 39 (2006), no. 26, 8377–8394. MR 2238507, DOI 10.1088/0305-4470/39/26/007
- Walter Ritz, Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, J. Reine Angew. Math. 135 (1909), 1–61 (German). MR 1580760, DOI 10.1515/crll.1909.135.1
- Frank Rösler, On the solvability complexity index for unbounded selfadjoint and Schrödinger operators, Integral Equations Operator Theory 91 (2019), no. 6, Paper No. 54, 23. MR 4040617, DOI 10.1007/s00020-019-2555-x
- P. Ruffini, Sopra la Determinazione Delle Radici Nelle Equazioni Numeriche Di Qualunque Grado. Memoria Del Dottor Paolo Ruffini, Modena, Società Tipografica, 1804.
- Yousef Saad, Numerical methods for large eigenvalue problems, Classics in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Revised edition of the 1992 original [ 1177405]. MR 3396212, DOI 10.1137/1.9781611970739.ch1
- I. I. Satija, The Butterfly in the Quantum World: The Story of the Most Fascinating Quantum Fractal, IOP Concise Physics, September 2016 (English).
- J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1–28 (German). MR 1580823, DOI 10.1515/crll.1911.140.1
- András Sütő, The spectrum of a quasiperiodic Schrödinger operator, Comm. Math. Phys. 111 (1987), no. 3, 409–415. MR 900502, DOI 10.1007/BF01238906
- Polly Wee Sy and Toshikazu Sunada, Discrete Schrödinger operators on a graph, Nagoya Math. J. 125 (1992), 141–150. MR 1156908, DOI 10.1017/S0027763000003949
- Olga Taussky, How I became a torchbearer for matrix theory, Amer. Math. Monthly 95 (1988), no. 9, 801–812. MR 967341, DOI 10.2307/2322895
- L. Tenenbaum, Approximations of symbolic substitution systems in one dimension, Preprint, arXiv:2402.19151, 2024.
- D. J. Thouless, Electrons in disordered systems and the theory of localization, Phys. Rep. 13 (1974), no. 3, 93–142.
- Lloyd N. Trefethen and Mark Embree, Spectra and pseudospectra, Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators. MR 2155029, DOI 10.1515/9780691213101
- A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, Proc. London Math. Soc. (2) 42 (1936), no. 3, 230–265. MR 1577030, DOI 10.1112/plms/s2-42.1.230
- J. M. Varah, On the separation of two matrices, SIAM J. Numer. Anal. 16 (1979), no. 2, 216–222. MR 526485, DOI 10.1137/0716016
- R. von Mises and H. Geiringer, Praktische Verfahren der Gleichungsauflösung, Z. Angew. Math. Mech. 9 (1929), 58–76.
- Alexandre Weinstein, Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques, NUMDAM, [place of publication not identified], 1937 (French). MR 3533056
- Hermann Weyl, Ramifications, old and new, of the eigenvalue problem, Bull. Amer. Math. Soc. 56 (1950), 115–139. MR 34940, DOI 10.1090/S0002-9904-1950-09369-0
- J. H. Wilkinson, Rigorous error bounds for computed eigensystems, Comput. J. 4 (1961/62), 230–241. MR 129124, DOI 10.1093/comjnl/4.3.230
- Tetsuro Yamamoto, Error bounds for computed eigenvalues and eigenvectors, Numer. Math. 34 (1980), no. 2, 189–199. MR 566681, DOI 10.1007/BF01396059
- Tetsuro Yamamoto, Error bounds for computed eigenvalues and eigenvectors. II, Numer. Math. 40 (1982), no. 2, 201–206. MR 684183, DOI 10.1007/BF01400539
Bibliographic Information
- Paul Hege
- Affiliation: Department of Neural Dynamics and MEG, Hertie Institute for Clinical Brain Research, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; and MEG Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
- ORCID: 0000-0002-2308-8346
- Email: paul-bernhard.hege@uni-tuebingen.de
- Massimo Moscolari
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- MR Author ID: 1304182
- Email: massimo.moscolari@polimi.it
- Stefan Teufel
- Affiliation: Mathematisches Institut, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- MR Author ID: 627009
- Email: stefan.teufel@uni-tuebingen.de
- Published electronically: February 21, 2025
- Additional Notes: The second author was supported by a fellowship of the Alexander von Humboldt Foundation during his stay at the University of Tübingen, where this work initiated. The second author also was supported by PNRR Italia Domani and Next Generation EU through the ICSC National Research Centre for High Performance Computing, Big Data and Quantum Computing and by the MUR grant Dipartimento di Eccellenza 2023–2027. The third author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 352 – Project-ID 470903074
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65Y20, 03D78, 65F99
- DOI: https://doi.org/10.1090/mcom/4075