Grading of triangulations generated by bisection
HTML articles powered by AMS MathViewer
- by Lars Diening, Johannes Storn and Tabea Tscherpel;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4102
- Published electronically: June 13, 2025
Abstract:
For triangulations generated by the adaptive bisection algorithm by Maubach and Traxler we prove existence of a regularized mesh function with grading two. This sharpens previous results in two dimensions for the newest vertex bisection and generalizes them to arbitrary dimensions. In combination with Diening, Storn, and Tscherpel [SIAM J. Numer. Anal. 59 (2021), pp. 2571–2607] this yields $H^1$-stability of the $L^2$-projection onto Lagrange finite element spaces for all polynomial degrees and dimensions smaller than seven.References
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- Dominic Breit, Lars Diening, Johannes Storn, and Jörn Wichmann, The parabolic $p$-Laplacian with fractional differentiability, IMA J. Numer. Anal. 41 (2021), no. 3, 2110–2138. MR 4286257, DOI 10.1093/imanum/draa081
- Jürgen Bey, Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes, Numer. Math. 85 (2000), no. 1, 1–29. MR 1751367, DOI 10.1007/s002110050475
- James H. Bramble, Joseph E. Pasciak, and Olaf Steinbach, On the stability of the $L^2$ projection in $H^1(\Omega )$, Math. Comp. 71 (2002), no. 237, 147–156. MR 1862992, DOI 10.1090/S0025-5718-01-01314-X
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- Carsten Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for $H^1$-stability of the $L^2$-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157–163. MR 1862993, DOI 10.1090/S0025-5718-01-01316-3
- Carsten Carstensen, An adaptive mesh-refining algorithm allowing for an $H^1$ stable $L^2$ projection onto Courant finite element spaces, Constr. Approx. 20 (2004), no. 4, 549–564. MR 2078085, DOI 10.1007/s00365-003-0550-5
- C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. MR 3170325, DOI 10.1016/j.camwa.2013.12.003
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- L. Diening, L. Gehring, and J. Storn, Adaptive mesh refinement for arbitrary initial triangulations, arXiv:2306.02674, 2024.
- Lars Diening, Christian Kreuzer, and Rob Stevenson, Instance optimality of the adaptive maximum strategy, Found. Comput. Math. 16 (2016), no. 1, 33–68. MR 3451423, DOI 10.1007/s10208-014-9236-6
- B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed., Cambridge University Press, New York, 2002. MR 1902334, DOI 10.1017/CBO9780511809088
- Lars Diening, Johannes Storn, and Tabea Tscherpel, On the Sobolev and $L^p$-stability of the $L^2$-projection, SIAM J. Numer. Anal. 59 (2021), no. 5, 2571–2607. MR 4320894, DOI 10.1137/20M1358013
- L. Diening, J. Storn, and T. Tscherpel, Fortin operator for the Taylor-Hood element, Numer. Math. 150 (2022), no. 2, 671–689. MR 4382591, DOI 10.1007/s00211-021-01260-1
- Fernando D. Gaspoz, Claus-Justus Heine, and Kunibert G. Siebert, Optimal grading of the newest vertex bisection and $H^1$-stability of the $L_2$-projection, IMA J. Numer. Anal. 36 (2016), no. 3, 1217–1241. MR 3523582, DOI 10.1093/imanum/drv044
- Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275–288. MR 1329875, DOI 10.1016/0377-0427(94)90034-5
- Joseph M. Maubach, Local bisection refinement for $n$-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), no. 1, 210–227. MR 1311687, DOI 10.1137/0916014
- William F. Mitchell, Adaptive refinement for arbitrary finite-element spaces with hierarchical bases, J. Comput. Appl. Math. 36 (1991), no. 1, 65–78. MR 1122958, DOI 10.1016/0377-0427(91)90226-A
- L. Ridgway Scott and Tabea Tscherpel, Dimensions of exactly divergence-free finite element spaces in 3D, SIAM J. Sci. Comput. 46 (2024), no. 2, A1102–A1131. MR 4726004, DOI 10.1137/22M1544579
- Rob Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, 227–241. MR 2353951, DOI 10.1090/S0025-5718-07-01959-X
- Rob Stevenson and Jan Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations, IMA J. Numer. Anal. 41 (2021), no. 1, 28–47. MR 4205051, DOI 10.1093/imanum/drz069
- C. T. Traxler, An algorithm for adaptive mesh refinement in $n$ dimensions, Computing 59 (1997), no. 2, 115–137. MR 1475530, DOI 10.1007/BF02684475
- Francesca Tantardini and Andreas Veeser, The $L^2$-projection and quasi-optimality of Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 54 (2016), no. 1, 317–340. MR 3457701, DOI 10.1137/140996811
- K. Weiss and L. De Floriani, Simplex and diamond hierarchies: models and applications, Comput. Graph. Forum 30 (2011), no. 8, 2127–2155, DOI 10.1111/j.1467-8659.2011.01853.x.
Bibliographic Information
- Lars Diening
- Affiliation: Department of Mathematics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany
- MR Author ID: 713774
- ORCID: 0000-0002-0523-3079
- Email: lars.diening@uni-bielefeld.de
- Johannes Storn
- Affiliation: Department of Mathematics, Bielefeld University, Postfach 10 01 31, 33501 Bielefeld, Germany; and Faculty of Mathematics & Computer Science, Institute of Mathematics, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany
- MR Author ID: 1277144
- ORCID: 0000-0003-1520-6557
- Email: johannes.storn@uni-leipzig.de
- Tabea Tscherpel
- Affiliation: Department of Mathematics, Technische Universität Darmstadt, Dolivostrasse 15, 64293 Darmstadt, Germany
- MR Author ID: 1378207
- ORCID: 0000-0002-5899-1279
- Email: tscherpel@mathematik.tu-darmstadt.de
- Received by editor(s): May 9, 2023
- Received by editor(s) in revised form: December 5, 2024, and April 8, 2025
- Published electronically: June 13, 2025
- Additional Notes: The work of the authors was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226.
- © Copyright 2025 by the authors
- Journal: Math. Comp.
- MSC (2020): Primary 65M15, 65N50, 65N12, 65N15
- DOI: https://doi.org/10.1090/mcom/4102