A $C^0$-IP method for distributed optimal control problem governed by a non-divergent form PDE with Cordes coefficients
HTML articles powered by AMS MathViewer
- by Arnab Pal, Thirupathi Gudi and Pratibha Shakya;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4109
- Published electronically: June 13, 2025
- PDF | Request permission
Abstract:
In this article, we develop a quadratic $C^{0}$ interior penalty method for the distributed optimal control problem governed by a second order elliptic partial differential equation (PDE) in nondivergence form. We derive both a priori and a posteriori error estimates. The theoretical results are illustrated by numerical experiments.References
- Alejandro Allendes, Francisco Fuica, Enrique Otarola, and Daniel Quero, A posteriori error estimates for a distributed optimal control problem of the stationary Navier-Stokes equations, SIAM J. Control Optim. 59 (2021), no. 4, 2898–2923. MR 4301394, DOI 10.1137/20M1329792
- Thomas Apel, Johannes Pfefferer, and Arnd Rösch, Finite element error estimates for Neumann boundary control problems on graded meshes, Comput. Optim. Appl. 52 (2012), no. 1, 3–28. MR 2925763, DOI 10.1007/s10589-011-9427-x
- S. Badia, R. Codina, T. Gudi, and J. Guzmán, Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity, IMA J. Numer. Anal. 34 (2014), no. 2, 800–819. MR 3194809, DOI 10.1093/imanum/drt022
- Susanne C. Brenner, Thirupathi Gudi, and Li-yeng Sung, An a posteriori error estimator for a quadratic $C^0$-interior penalty method for the biharmonic problem, IMA J. Numer. Anal. 30 (2010), no. 3, 777–798. MR 2670114, DOI 10.1093/imanum/drn057
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Susanne C. Brenner and Li-Yeng Sung, $C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22/23 (2005), 83–118. MR 2142191, DOI 10.1007/s10915-004-4135-7
- Susanne C. Brenner, Kening Wang, and Jie Zhao, Poincaré-Friedrichs inequalities for piecewise $H^2$ functions, Numer. Funct. Anal. Optim. 25 (2004), no. 5-6, 463–478. MR 2106270, DOI 10.1081/NFA-200042165
- Eduardo Casas and Mariano Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl. 39 (2008), no. 3, 265–295. MR 2396868, DOI 10.1007/s10589-007-9056-6
- Eduardo Casas and Jean-Pierre Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim. 45 (2006), no. 5, 1586–1611. MR 2272157, DOI 10.1137/050626600
- Sudipto Chowdhury, Thirupathi Gudi, and A. K. Nandakumaran, A framework for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to $C^0$ IP methods, Numer. Funct. Anal. Optim. 36 (2015), no. 11, 1388–1419. MR 3418817, DOI 10.1080/01630563.2015.1068182
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Klaus Deckelnick and Michael Hinze, Convergence of a finite element approximation to a state-constrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007), no. 5, 1937–1953. MR 2346365, DOI 10.1137/060652361
- Klaus Deckelnick, Andreas Günther, and Michael Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains, SIAM J. Control Optim. 48 (2009), no. 4, 2798–2819. MR 2558321, DOI 10.1137/080735369
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Xiaobing Feng, Lauren Hennings, and Michael Neilan, Finite element methods for second order linear elliptic partial differential equations in non-divergence form, Math. Comp. 86 (2017), no. 307, 2025–2051. MR 3647950, DOI 10.1090/mcom/3168
- Thomas Führer and Michael Karkulik, Least-squares finite elements for distributed optimal control problems, Numer. Math. 154 (2023), no. 3-4, 409–442. MR 4630546, DOI 10.1007/s00211-023-01367-7
- Dietmar Gallistl, Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients, SIAM J. Numer. Anal. 55 (2017), no. 2, 737–757. MR 3628316, DOI 10.1137/16M1080495
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Wei Gong and Ningning Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality, Numer. Math. 135 (2017), no. 4, 1121–1170. MR 3621827, DOI 10.1007/s00211-016-0827-9
- Thirupathi Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169–2189. MR 2684360, DOI 10.1090/S0025-5718-10-02360-4
- Andreas Günther and Michael Hinze, Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls, Comput. Optim. Appl. 49 (2011), no. 3, 549–566. MR 2803864, DOI 10.1007/s10589-009-9308-8
- M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl. 30 (2005), no. 1, 45–61. MR 2122182, DOI 10.1007/s10589-005-4559-5
- M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim. 13 (2002), no. 3, 865–888 (2003). MR 1972219, DOI 10.1137/S1052623401383558
- Michael Hintermüller, Ronald H. W. Hoppe, Yuri Iliash, and Michael Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 540–560. MR 2434065, DOI 10.1051/cocv:2007057
- Weiwei Hu, Jiguang Shen, John R. Singler, Yangwen Zhang, and Xiaobo Zheng, A superconvergent HDG method for distributed control of convection diffusion PDEs, J. Sci. Comput. 76 (2018), no. 3, 1436–1457. MR 3833696, DOI 10.1007/s10915-018-0668-z
- Ellya L. Kawecki and Iain Smears, Unified analysis of discontinuous Galerkin and $C^0$-interior penalty finite element methods for Hamilton-Jacobi-Bellman and Isaacs equations, ESAIM Math. Model. Numer. Anal. 55 (2021), no. 2, 449–478. MR 4229194, DOI 10.1051/m2an/2020081
- Ellya L. Kawecki and Iain Smears, Convergence of adaptive discontinuous Galerkin and $C^0$-interior penalty finite element methods for Hamilton-Jacobi-Bellman and Isaacs equations, Found. Comput. Math. 22 (2022), no. 2, 315–364. MR 4407745, DOI 10.1007/s10208-021-09493-0
- Kristina Kohls, Arnd Rösch, and Kunibert G. Siebert, Convergence of adaptive finite elements for optimal control problems with control constraints, Trends in PDE constrained optimization, Internat. Ser. Numer. Math., vol. 165, Birkhäuser/Springer, Cham, 2014, pp. 403–419. MR 3328987, DOI 10.1007/978-3-319-05083-6_{2}5
- Omar Lakkis and Amireh Mousavi, A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations, IMA J. Numer. Anal. 42 (2022), no. 3, 2151–2189. MR 4454919, DOI 10.1093/imanum/drab034
- Omar Lakkis and Tristan Pryer, A finite element method for second order nonvariational elliptic problems, SIAM J. Sci. Comput. 33 (2011), no. 2, 786–801. MR 2801189, DOI 10.1137/100787672
- Wenbin Liu and Ningning Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 73–99. MR 1860717, DOI 10.1137/S0036142999352187
- S. May, R. Rannacher, and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM J. Control Optim. 51 (2013), no. 3, 2585–2611. MR 3070527, DOI 10.1137/080735734
- C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control Optim. 43 (2004), no. 3, 970–985. MR 2114385, DOI 10.1137/S0363012903431608
- Antonino Maugeri, Dian K. Palagachev, and Lubomira G. Softova, Elliptic and parabolic equations with discontinuous coefficients, Mathematical Research, vol. 109, Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. MR 2260015, DOI 10.1002/3527600868
- Michael Neilan, Convergence analysis of a finite element method for second order non-variational elliptic problems, J. Numer. Math. 25 (2017), no. 3, 169–184. MR 3707104, DOI 10.1515/jnma-2016-1017
- Michael Neilan and Mohan Wu, Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs, J. Comput. Appl. Math. 356 (2019), 358–376. MR 3921147, DOI 10.1016/j.cam.2019.01.032
- Mikhail V. Safonov, Nonuniqueness for second-order elliptic equations with measurable coefficients, SIAM J. Math. Anal. 30 (1999), no. 4, 879–895. MR 1684729, DOI 10.1137/S0036141096309046
- Iain Smears and Endre Süli, Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients, SIAM J. Numer. Anal. 52 (2014), no. 2, 993–1016. MR 3196952, DOI 10.1137/130909536
- Iain Smears and Endre Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients, SIAM J. Numer. Anal. 51 (2013), no. 4, 2088–2106. MR 3077903, DOI 10.1137/120899613
- I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients, Technical rep. NA 12/17, Oxford University Numerical Analysis Group, Oxford, UK, 2012. Available online at http://eprints.maths.ox.ac.uk/1623/.
- Fredi Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics, vol. 112, American Mathematical Society, Providence, RI, 2010. Theory, methods and applications; Translated from the 2005 German original by Jürgen Sprekels. MR 2583281, DOI 10.1090/gsm/112
Bibliographic Information
- Arnab Pal
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India
- MR Author ID: 1648973
- Email: arnabpalp@iisc.ac.in
- Thirupathi Gudi
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India
- MR Author ID: 806068
- Email: gudi@iisc.ac.in
- Pratibha Shakya
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India
- MR Author ID: 1246209
- Email: shakya.pratibha10@gmail.com
- Received by editor(s): December 13, 2024
- Received by editor(s) in revised form: April 3, 2025
- Published electronically: June 13, 2025
- Additional Notes: The third author was financially supported by the Department of Science and Technology (DST) under the scheme National Post-Doctoral Fellowship (PDF/2021/000444) and the DST Inspire Faculty Research Grant (DST/INSPIRE/04/2023/000257), New Delhi, India
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65N30, 65N15, 65N12, 65K10
- DOI: https://doi.org/10.1090/mcom/4109