Breaking the 4 barrier for the bound of a generating set of the class group
HTML articles powered by AMS MathViewer
- by Loïc Grenié and Giuseppe Molteni;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4114
- Published electronically: June 27, 2025
- HTML | PDF | Request permission
Abstract:
Let $\mathbb {{{K}}}$ be a field of degree $n$ and discriminant with absolute value $\Delta$. Under the assumption of the validity of the Generalized Riemann Hypothesis, we provide a new algorithm to compute a set of generators of the class group of $\mathbb {{{K}}}$ and prove that the norm of the ideals in that set is $\leq (4-1/(2n))\log ^2\Delta$, except for a finite number of fields of degree $n\leq 4$. For those fields, the conclusion holds with the slightly larger limit $(4-1/(2n)+1/(2n^2))\log ^2\Delta$. When the cardinality of $\mathcal {C}\!\ell$ is odd the bounds improve to $(4-2/(3n))\log ^2\Delta$, again with finitely many exceptions in degree $n\leq 4$, and to $(4-2/(3n)+3/(8n^2))\log ^2\Delta$ without exceptions.References
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman, Small generators of the ideal class group, Math. Comp. 77 (2008), no. 262, 1185–1197. MR 2373197, DOI 10.1090/S0025-5718-07-02003-0
- Ruth I. Berger, Class number parity and unit signature, Arch. Math. (Basel) 59 (1992), no. 5, 427–435. MR 1185340, DOI 10.1007/BF01236037
- P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Mathematics, vol. 8, World Scientific Publishing Co., Singapore, 1988. MR 963648, DOI 10.1142/0663
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- Helmut Hasse, On the class number of Abelian number fields, Springer, Cham, 2019. Extended with tables by Ken-ichi Yoshino and Mikihito Hirabayashi; Translated from the 1985 German reprint [ MR0842666] and with a preface by Hirabayashi; With a foreword by Franz Lemmermeyer. MR 3931333, DOI 10.1007/978-3-030-01512-1
- Ana-Cecilia de la Maza, Bounds for the smallest norm in an ideal class, Math. Comp. 71 (2002), no. 240, 1745–1758. MR 1933053, DOI 10.1090/S0025-5718-01-01373-4
- Loïc Grenié and Giuseppe Molteni, Explicit bounds for generators of the class group, Math. Comp. 87 (2018), no. 313, 2483–2511. MR 3802443, DOI 10.1090/mcom/3281
- H. P. Mulholland, On the product of $n$ complex homogeneous linear forms, J. London Math. Soc. 35 (1960), 241–250. MR 113872, DOI 10.1112/jlms/s1-35.2.241
- A. M. Odlyzko, Discriminant bounds, 1976, available at http://www.dtc.umn.edu/~odlyzko/unpublished/index.html.
- A. M. Odlyzko, Tables of zeros of the Riemann zeta function, 1998, available at https://www-users.cse.umn.edu/~odlyzko/zeta_tables/index.html.
- A. M. Odlyzko, Lower bounds for discriminants of number fields, Acta Arith. 29 (1976), no. 3, 275–297. MR 401704, DOI 10.4064/aa-29-3-275-297
- A. M. Odlyzko, Lower bounds for discriminants of number fields. II, Tôhoku Math. J. 29 (1977), no. 2, 209–216. MR 441918, DOI 10.2748/tmj/1178240652
- PARI Group, Univ. Bordeaux. package nftables.tgz, 2008, available at http://pari.math.u-bordeaux.fr/packages.html.
- PARI Group, Bordeaux, PARI/GP, version 2.15.5, 1985–2024, Available at http://pari.math.u-bordeaux.fr/.
- PlaFRIM, Bordeaux, Experimental testbed, 2022, https://www.plafrim.fr.
- Georges Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18 (French). MR 551335
- C. A. Rogers, The product of $n$ real homogeneous linear forms, Acta Math. 82 (1950), 185–208. MR 33851, DOI 10.1007/BF02398277
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Jesse Thorner and Asif Zaman, A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures, Int. Math. Res. Not. IMRN 16 (2018), 4991–5027. MR 3848226, DOI 10.1093/imrn/rnx031
- Rainer Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), no. 3, 367–380 (German). MR 604833, DOI 10.1007/BF01394249
Bibliographic Information
- Loïc Grenié
- Affiliation: Dipartimento di Ingegneria gestionale, dell’informazione e della produzione, Università di Bergamo, viale Marconi 5, I-24044 Dalmine, Italy
- MR Author ID: 712882
- Email: loic.grenie@gmail.com
- Giuseppe Molteni
- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133 Milano, Italy
- MR Author ID: 357391
- ORCID: 0000-0003-3323-4383
- Email: giuseppe.molteni1@unimi.it
- Received by editor(s): December 19, 2022
- Received by editor(s) in revised form: July 26, 2024
- Published electronically: June 27, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 11R04, 11R29; Secondary 11Y40
- DOI: https://doi.org/10.1090/mcom/4114