Integral differential forms for superelliptic curves
HTML articles powered by AMS MathViewer
- by Sabrina Kunzweiler and Stefan Wewers;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4115
- Published electronically: June 24, 2025
- HTML | PDF | Request permission
Abstract:
Given a superelliptic curve $Y_K:\; y^n=f(x)$ over a local field $K$, we describe the theoretical background and an implementation of a new algorithm for computing the $\mathfrak {o}_K$-lattice of integral differential forms on $Y_K$. We build on the results of Obus and Wewers [J. Algebraic Geom. 29 (2020), pp. 691–728] who describe arbitrary regular models of the projective line using only valuations. One novelty of our approach is that we construct an $\mathfrak {o}_K$-model of $Y_K$ with only rational singularities, but which may not be regular.References
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
- Irene Bouw, Nirvana Coppola, Pınar Kılıçer, Sabrina Kunzweiler, Elisa Lorenzo García, and Anna Somoza, Reduction types of genus-3 curves in a special stratum of their moduli space, Women in numbers Europe III—research directions in number theory, Assoc. Women Math. Ser., vol. 24, Springer, Cham, [2021] ©2021, pp. 115–162. MR 4417705, DOI 10.1007/978-3-030-77700-5_{4}
- T. Dokchitser, Models of curves, \nolinkurl{https://people.maths.bris.ac.uk/ matyd/newton/}.
- Tim Dokchitser, Models of curves over discrete valuation rings, Duke Math. J. 170 (2021), no. 11, 2519–2574. MR 4302549, DOI 10.1215/00127094-2020-0079
- Tim Dokchitser, Vladimir Dokchitser, Céline Maistret, and Adam Morgan, Arithmetic of hyperelliptic curves over local fields, Math. Ann. 385 (2023), no. 3-4, 1213–1322. MR 4566695, DOI 10.1007/s00208-021-02319-y
- Julio Fernández, Jordi Guàrdia, Jesús Montes, and Enric Nart, Residual ideals of MacLane valuations, J. Algebra 427 (2015), 30–75. MR 3312294, DOI 10.1016/j.jalgebra.2014.12.022
- E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, DOI 10.1090/S0025-5718-01-01320-5
- Alexander Grothendieck and Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin-New York, 1971. MR 316453
- Lars Halvard Halle and Johannes Nicaise, Néron models and base change, Lecture Notes in Mathematics, vol. 2156, Springer, [Cham], 2016. MR 3468022, DOI 10.1007/978-3-319-26638-1
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI 10.2307/2374941
- Ivan Kausz, A discriminant and an upper bound for $\omega ^2$ for hyperelliptic arithmetic surfaces, Compositio Math. 115 (1999), no. 1, 37–69. MR 1671741, DOI 10.1023/A:1000580901251
- Sabrina Kunzweiler, Differential forms on hyperelliptic curves with semistable reduction, Res. Number Theory 6 (2020), no. 2, Paper No. 25, 17. MR 4111906, DOI 10.1007/s40993-020-00200-6
- S. Kunzweiler, Models of curves and integral differential forms, Ph.D. Thesis, Universität Ulm, 2021.
- S. Kunzweiler and S. Wewers, https://github.com/swewers/regular\_models.
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
- Joseph Lipman, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), no. 1, 151–207. MR 491722, DOI 10.2307/1971141
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Saunders MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40 (1936), no. 3, 363–395. MR 1501879, DOI 10.1090/S0002-9947-1936-1501879-8
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Matthew Morrow, An explicit approach to residues on and dualizing sheaves of arithmetic surfaces, New York J. Math. 16 (2010), 575–627. MR 2740592
- Simone Muselli, Models and integral differentials of hyperelliptic curves, Glasg. Math. J. 66 (2024), no. 2, 382–439. MR 4818175, DOI 10.1017/S001708952400003X
- Jürgen Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992 (German). MR 3444843, DOI 10.1007/978-3-540-37663-7
- Andrew Obus and Padmavathi Srinivasan, Explicit minimal embedded resolutions of divisors on models of the projective line, Res. Number Theory 8 (2022), no. 2, Paper No. 27, 27. MR 4409862, DOI 10.1007/s40993-022-00323-y
- A. Obus and P. Srinivasan, Conductor-discriminant inequality for hyperelliptic curves in odd residue characteristic, Int. Math. Res. Not. IMRN 2024 (2024), no. 9, 7343–7359.
- Andrew Obus and Stefan Wewers, Explicit resolution of weak wild quotient singularities on arithmetic surfaces, J. Algebraic Geom. 29 (2020), no. 4, 691–728. MR 4158463, DOI 10.1090/jag/745
- J. Rüth, Models of curves and valuations, Ph.D. Thesis, Universität Ulm, 2015.
- J. Rüth and S. Wewers, MCLF: a Sage toolbox for computations with models of curves over local fields, https://github.com/MCLF/mclf.
- The Sage Developers, Sagemath, the Sage mathematics software system (version 10.5), 2025, https://www.sagemath.org.
- Raymond van Bommel, Numerical verification of the Birch and Swinnerton-Dyer conjecture for hyperelliptic curves of higher genus over $\Bbb {Q}$ up to squares, Exp. Math. 31 (2022), no. 1, 138–145. MR 4399114, DOI 10.1080/10586458.2019.1592035
Bibliographic Information
- Sabrina Kunzweiler
- Affiliation: Inria, IMB, Université de Bordeaux, 351, cours de la Libération, 33405 Talence, France
- MR Author ID: 1383588
- ORCID: 0000-0002-6179-2094
- Email: sabrina.kunzweiler@math.u-bordeaux.fr
- Stefan Wewers
- Affiliation: Institut für Algebra und Zahlentheorie, Universität Ulm, Helmholtzstr. 18, 89081 Ulm, Germany
- MR Author ID: 652833
- ORCID: 0000-0003-1667-4168
- Email: stefan.wewers@uni-ulm.de
- Received by editor(s): August 7, 2023
- Received by editor(s) in revised form: May 5, 2025
- Published electronically: June 24, 2025
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 11G20; Secondary 14G10, 11G40
- DOI: https://doi.org/10.1090/mcom/4115