The sharpness condition for constructing a finite element from a superspline
HTML articles powered by AMS MathViewer
- by Jun Hu, Ting Lin, Qingyu Wu and Beihui Yuan;
- Math. Comp.
- DOI: https://doi.org/10.1090/mcom/4119
- Published electronically: June 26, 2025
- HTML | PDF | Request permission
Abstract:
This paper addresses sharpness conditions for constructing $C^r$ conforming finite element spaces from superspline spaces on general simplicial triangulations. We introduce the concept of extendability for the pre-element spaces, which encompasses both the superspline spaces and the finite element spaces. By examining the extendability condition for both types of spaces, we provide an answer to the conditions regarding the construction. A corollary of our results is that constructing $C^r$ conforming elements in $d$ dimensions generally requires an extra $C^{2^{s - 1} r}$ continuity on $s$-codimensional subsimplices, and the polynomial degree is at least $(2^d r + 1)$.References
- Peter Alfeld and L. L. Schumaker, The dimension of bivariate spline spaces of smoothness $r$ for degree $d\geq 4r+1$, Constr. Approx. 3 (1987), no. 2, 189–197. MR 889554, DOI 10.1007/BF01890563
- Peter Alfeld and Larry L. Schumaker, On the dimension of bivariate spline spaces of smoothness $r$ and degree $d=3r+1$, Numer. Math. 57 (1990), no. 6-7, 651–661. MR 1062372, DOI 10.1007/BF01386434
- P. Alfeld and L. L. Schumaker, Nonexistence of star-supported spline bases, SIAM J. Math. Anal. 31 (2000), no. 2, 455–465.
- Peter Alfeld, Larry L. Schumaker, and Maritza Sirvent, On dimension and existence of local bases for multivariate spline spaces, J. Approx. Theory 70 (1992), no. 2, 243–264. MR 1172021, DOI 10.1016/0021-9045(92)90087-5
- Peter Alfeld, Larry L. Schumaker, and Walter Whiteley, The generic dimension of the space of $C^1$ splines of degree $d\geq 8$ on tetrahedral decompositions, SIAM J. Numer. Anal. 30 (1993), no. 3, 889–920. MR 1220660, DOI 10.1137/0730047
- Peter Alfeld and Maritza Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp. 57 (1991), no. 195, 299–308. MR 1079007, DOI 10.1090/S0025-5718-1991-1079007-2
- J. H. Argyris, I. Fried, and D. W. Scharpf, The TUBA family of plate elements for the matrix displacement method, Aeronautical J. 72 (1968), no. 692, 701–709.
- James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 282540, DOI 10.1090/S0025-5718-1970-0282540-0
- Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR 1481706, DOI 10.1007/978-1-4612-0647-7
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Carl de Boor, $B$-form basics, Geometric modeling, SIAM, Philadelphia, PA, 1987, pp. 131–148. MR 936450
- Carl de Boor, A practical guide to splines, Revised edition, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York, 2001. MR 1900298
- Michael DiPasquale and Nelly Villamizar, A lower bound for splines on tetrahedral vertex stars, SIAM J. Appl. Algebra Geom. 5 (2021), no. 2, 250–277. MR 4272902, DOI 10.1137/20M1341118
- Dong Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), no. 1, 56–75. MR 1117308, DOI 10.1007/BF02907546
- Alexandre Ern and Jean-Luc Guermond, Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, vol. 72, Springer, Cham, [2021] ©2021. MR 4242224, DOI 10.1007/978-3-030-56341-7
- Michael S. Floater and Kaibo Hu, A characterization of supersmoothness of multivariate splines, Adv. Comput. Math. 46 (2020), no. 5, Paper No. 70, 15. MR 4141530, DOI 10.1007/s10444-020-09813-y
- D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www2.macaulay2.com.
- Jun Hu, Ting Lin, and Qingyu Wu, A construction of $C^r$ conforming finite element spaces in any dimension, Found. Comput. Math. 24 (2024), no. 6, 1941–1977. MR 4835148, DOI 10.1007/s10208-023-09627-6
- Adel Kh. Ibrahim and Larry L. Schumaker, Super spline spaces of smoothness $r$ and degree $d\geq 3r+2$, Constr. Approx. 7 (1991), no. 3, 401–423. MR 1120412, DOI 10.1007/BF01888166
- M. Laghchim-Lahlou and P. Sablonnière, Triangular finite elements of HCT type and class $C^\rho$, Adv. Comput. Math. 2 (1994), no. 1, 101–122. MR 1266026, DOI 10.1007/BF02519038
- Ming-Jun Lai and Larry L. Schumaker, Spline functions on triangulations, Encyclopedia of Mathematics and its Applications, vol. 110, Cambridge University Press, Cambridge, 2007. MR 2355272, DOI 10.1017/CBO9780511721588
- John Morgan and Ridgway Scott, A nodal basis for $C^{1}$ piecewise polynomials of degree $n\geq 5$, Math. Comput. 29 (1975), 736–740. MR 375740, DOI 10.1090/S0025-5718-1975-0375740-7
- Hal Schenck, Algebraic methods in approximation theory, Comput. Aided Geom. Design 45 (2016), 14–31. MR 3510453, DOI 10.1016/j.cagd.2015.11.001
- Larry L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate approximation theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser Verlag, Basel-Boston, Mass., 1979, pp. 396–412. MR 560683
- Larry L. Schumaker, On super splines and finite elements, SIAM J. Numer. Anal. 26 (1989), no. 4, 997–1005. MR 1005521, DOI 10.1137/0726055
- Larry L. Schumaker, Spline functions: basic theory, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2007. MR 2348176, DOI 10.1017/CBO9780511618994
- X. Shi, Higher-dimensional spline, Ph.D. Thesis, Jilin University, 1988.
- T. Sorokina, Intrinsic supersmoothness of multivariate splines, Numer. Math. 116 (2010), no. 3, 421–434. MR 2684292, DOI 10.1007/s00211-010-0306-7
- Deepesh Toshniwal and Nelly Villamizar, Algebraic methods to study the dimension of supersmooth spline spaces, Adv. in Appl. Math. 142 (2023), Paper No. 102412, 30. MR 4473641, DOI 10.1016/j.aam.2022.102412
- Ren-Hong Wang, Multivariate spline functions and their applications, Mathematics and its Applications, vol. 529, Kluwer Academic Publishers, Dordrecht; Science Press Beijing, Beijing, 2001. Translated from the 1994 Chinese original by Shao-Ming Wang and revised by the author. MR 1891792, DOI 10.1007/978-94-017-2378-7
- Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283–296. MR 275014, DOI 10.1007/BF02165119
- Shangyou Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids, Appl. Numer. Math. 59 (2009), no. 1, 219–233. MR 2474112, DOI 10.1016/j.apnum.2008.02.002
- S. Zhang, A family of differentiable finite elements on simplicial grids in four space dimensions, Math. Numer. Sin. 38 (2016), no. 3, 309.
Bibliographic Information
- Jun Hu
- Affiliation: LMAM, Peking University, Beijing 100871, People’s Republic of China; and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 714525
- Email: hujun@math.pku.edu.cn
- Ting Lin
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- ORCID: 0000-0003-2369-2559
- Email: lintingsms@pku.edu.cn
- Qingyu Wu
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 1589990
- ORCID: 0009-0000-5389-1490
- Email: wu_qingyu@pku.edu.cn
- Beihui Yuan
- Affiliation: Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, People’s Republic of China
- MR Author ID: 1136137
- ORCID: 0000-0002-0662-0732
- Email: beihuiyuan@bimsa.cn
- Received by editor(s): July 4, 2024
- Received by editor(s) in revised form: March 19, 2025, and May 12, 2025
- Published electronically: June 26, 2025
- Additional Notes: The first author was supported by NSFC project No. 12288101. The second author was supported by NSFC project No. 123B2014. The fourth author was supported by Beijing Institute of Mathematical Sciences and Applications (BIMSA) startup grant and Beijing Natural Science Foundation No. 1254042
- © Copyright 2025 American Mathematical Society
- Journal: Math. Comp.
- MSC (2020): Primary 65N30, 65D07
- DOI: https://doi.org/10.1090/mcom/4119