Recent Mathematical Tables
Journal:
Math. Comp. 2 (1946), 6885
DOI:
https://doi.org/10.1090/S0025571846996251
Corrigendum:
Math. Comp. 2 (1947), 375.
Corrigendum:
Math. Comp. 2 (1947), 288.
Fulltext PDF Free Access
References  Additional Information

L. Euler, Introductio in Analysin Infinitorum, v. 1, Lausanne, 1748, p. 319; Opera Omnia, s. 1, v. 8, Leipzig and Berlin, 1922, p. 388.
J. W. L. Glaisher, B.A.A.S., Report, 1871, p. 1618 (Sect. trans.), also Report, 1873, p. 128, 1. 12.
W. Shanks, Royal So. London, Proc., v. 6, 1854, p. 397.
J. M. Boorman, Math. Mag., v. 1, 1884, p. 204. Another calculation was made by Fr. Ticháneck in 1893 to 225D (correct to within a unit in the last place), Jahrbuch ü. d. Fortschritte d. Mathem., v. 25, p. 736; there is here a misprint in the 43rd decimal place, for 6 read 0.
 Derrick Henry Lehmer, On the Value of the Napierian Base, Amer. J. Math. 48 (1926), no. 2, 139–143. MR 1506580, DOI https://doi.org/10.2307/2370743
 D. N. Lehmer, Arithmetical Theory of Certain Hurwitzian Continued Fractions, Amer. J. Math. 40 (1918), no. 4, 375–390. MR 1506366, DOI https://doi.org/10.2307/2370436 D. H. Lehmer, Annals Math., v. 23, 1932, p. 143150. W. S. Gossett (Student), (a) “The probable error of a mean,” Biometrika, v. 6, 1908, p. 125; (b) Collected Papers, Cambridge, 1942, p. 1134. R. A. Fisher, “Applications of ’Student’s’ distribution,” Metron, v. 5, no. 3, 1925, p. 90104. R. A. Fisher, ibid.; the table has also been published in Fisher’s Statistical Methods for Research Workers, eighth ed., Edinburgh, Oliver & Boyd, 1941, p. 167. Theodore Theodorsen, “General theory of aerodynamic instability and the mechanism of flutter,” NACA, Techn. Reports, no. 496, 1934, p. 418, 426; see MTAC, v. 1, p. 404. E. L. Ince, “Researches into the characteristic numbers of the Mathieu equation,” R. So. Edinburgh, Proc., v. 46, 1925, p. 28. M. J. O. Strutt, Lamésche, Mathieusche, und verwandte Funktionen in Physik und Technik, Berlin, Springer, 1932, p. 24.
 S. Lubkin and J. J. Stoker, Stability of columns and strings under periodically varying forces, Quart. Appl. Math. 1 (1943), 215–236. MR 8982, DOI https://doi.org/10.1090/S0033569X194308982X
 N. W. McLachlan, Computation of the solution of Mathieu’s equation, Philos. Mag. (7) 36 (1945), 403–414. MR 15910 Stratton, Morse, Chu & Hutner, Elliptic Cylinder and Spheroidal Wave Functions, New York, Wiley, 1941; compare MTAC, v. 1, p. 157f, 414.
Additional Information
Article copyright:
© Copyright 1946
American Mathematical Society