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For (15, 2, 1) (10, 5, 3)i2, (9, 6, 3)n, (8, 7, 3)2, (8, 6, 4)3, read (15, 2, 1) (10, 5, 3)„,

(9, 6, 3)h, (8, 7, 3)3, (8, 6, 4)4;/or (14, 3, 1) (8, 6, 4)2, read (14, 3, 1) (8, 6, 4),; for (12, 4, 2)
(11, 6, 1)>, read (12, 4, 2) (11, 6, l)e. These corrections change the total number of 4 X 4

magic squares from 539136 to 549504.
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Yamagata-Ken

Japan

UNPUBLISHED MATHEMATICAL TABLES

82 [F].—L. Poletti, Factor Table and List of Primes for the 30000 natural
numbers nearest 15,000,000. Manuscript table deposited in the library

of the American Math. Soc. New York.

This table gives new information for the range 14984970-15000000. The second half

from 15000000 to 15015000, is also covered by W. P. Durfee's factor table for the 16th mil-

lion, a table which is in the same library.

The factor table, which the author calls "Neocribrum," is a "type 3 table" arranged in

the usual way modulo 30. On p. 1 are given data on the distribution of the primes in this

range. Thus there are 1809 primes which are also classified modulo 30. There are 159 prime

pairs. There are 113 consecutive composite numbers following 14996687.

Poletti is the author of Tavole di Numeri Primi entro Limiti Diversi e Tavole Affini,

Milan, 1920.

D. H. L.

83[G, I].—H. E. Salzer, Coefficients of the first fifteen General Laguerre

Polynomials. Ms. in possession of the author.

The writer announced previously (MTAC, v. 2, p. 89) a manuscript giving the coeffi-

cients of Laguerre polynomials, which are a special case of general Laguerre polynomials

Lnm(x), namely for a = 0. The present manuscript gives the polynomials in a which are

the coefficients of x" in the general Laguerre polynomial

L„<«>(x) m exx-a — ( — ) (e-xx"+a) =  S ( ) ¡¡--, for y = 0(1)»,
n\ \dx/ „_0 \ n — v /     v\

and for » = 0(1)15.

H. E. Salzer

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau

of Standards. Correspondence regarding the Section should be directed to Dr. E. W.

Cannon, 418 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

Our contribution under this heading, appearing earlier in this issue, is "The California

Institute of Technology Electric Analogue Computer" by Prof. G. D. McCann.

Discussions

Procedure for the Machine or Numerical Solution of Ordinary Linear

Differential Equations for Two-Point Linear Boundary Values

Introduction. Increased attention is being focused on machine and

numerical solutions of differential equations which cannot be solved by

ordinary mathematical methods. There is need for more information on this
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subject for engineers and others who deal with such equations. This paper

describes a procedure applicable to numerical or machine solutions of the

general non-homogeneous ordinary linear differential equation with variable

coefficients where the form of these coefficients does not easily permit of

solution by series. The method is based on the well-known properties of

linear differential equations.

Ordinary differential equations of order higher than the first commonly

describe problems where the known boundary conditions are expressed

at two different values of the independent variable. Such problems are known

as two-point boundary-value problems. Although a great many linear equa-

tions, such as the Bessel and Legendre equations, may be rigorously

handled by the method of Frobenius, there are frequently those where the

variable coefficients of the derivatives are so complex that a series solution

is not feasible. For such equations, recourse to solution by numerical methods

or by some type of computing machine or analyzer may be sought. In this

event, a difficulty is at once encountered if divided boundary conditions are

present. In the case of an equation of order n, the dependent variable and its

n — 1 derivatives must possess assigned values at some point within the

interval in order that a machine or step-by-step solution may proceed from

that point. Consider the case of a second-order equation where the two

boundary conditions are divided between both ends of the range of the

independent variable. Only one of an unlimited number of possible values

of the initially unknown dependent variable or one of its derivatives, as the

case may be, at one end of the interval of solution will satisfy the boundary

condition at the other end. For a fourth-order equation with equally divided

boundary conditions, a double latitude of possible initial choices would exist.

The theory of ordinary linear differential equations appears extensively

in the mathematical literature.12'3 Application to the two-point boundary

problem where numerical or machine solutions are involved does not appear

to be generally well known. The purpose of this paper is to show in relatively

simple mathematical terms and by graphical illustration how the two-point

boundary problem may be handled. The method applies to any ordinary

linear differential equation of order n where the boundary conditions are

expressible in terms of linear combinations of the dependent variable and its

n — 1 derivatives and where K boundary conditions are known at one point

of the interval of solution and the remaining n — K conditions are known

at some other point of the interval. It is shown that for K < n/2 only

K + 1 trial solutions with arbitrarily selected values for those derivatives

which are initially unknown are required to determine the unique solution

satisfying all n boundary conditions. It is also shown that n + 1 trial solu-

tions will give data for any solution of the non-homogeneous equation. In

addition, a possible graphical procedure is suggested for converging on the

solution of non-linear equations.

Theory. Consider an ordinary non-homogeneous linear differential equa-

tion of order n with variable coefficients. This is

(1)     fo(d»y/dx") + Md^y/dx-1) + ■ ■ ■ + fn-x(dy/dx) + fny = /.

Assume fa, f\, ■ • • fn, f are finite, one-valued, and continuous functions of x

in the interval a0 < x < b0, and that /0 does not vanish at any point in the

interval. Under these conditions, there is known to exist a solution y such
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that y and its first n derivatives are continuous and have unique values at

every point in the interval. The reduced or homogeneous equation corre-

sponding to equation (1) is

(2) fo(d"y/dx») + Md^y/dx"-') + • • • + fn^(dy/dx) + fny = 0

and is known to have n and only n linearly independent solutions,4 yu y2,

■ ■ ■ y„. The known complete solution of equation (1) is then

i'=n

(3) y = cryi + c2y2 + ■ ■ ■ + cny„ + yp = yp + £ dyt,
i=l

where yp is any particular solution of equation (1) and C\, c2, • ■ ■ cn are

arbitrary constants to be determined by the n boundary conditions.

If the quantities Bk which assume boundary values are linear,6 we may

express them in the following manner :

(4) Bk = 3j:   aiiWy/dxi),       k -1, 2, • • • »,

where each of the coefficients, ak, ¡, represents a constant or some known

function of x, and where \ak, ,-| ^ 0 since the boundary conditions are

linearly independent. Substituting the general solution, equation (3), into

equation (4) and factoring out the c's, we have for the particular point,

x = xk, at which Bk has a known value,

(i=n        j=n— 1 j=n—\

Bk = £ Ci   £   aki j(d'yi/dx>) +   £   ak, ¡(d'yjdx') \

k = 1,2,3, ■■■ n.

In this expression for Bk, all terms are of fixed value. Since there are n such

linear expressions for the B's, and the product \ak,,-\ ■ \d'yi/dx'\ does not

vanish, we may solve explicitly for the n values of the c's. Carrying this out

one obtains linear equations of the form,

k=*n

(5) Ci = bi + £ bi,kBk,        i = 1, 2, • • • n.

The term bi is a combination of the constant values of yp and its derivatives

for the particular x involved, and biik is a combination of the constants

ak, j and the fixed values of y< and its derivatives. Substituting equation (5)

into equation (3) one obtains

i=n k=n i=n

(6) y = yp + E b,yi + £ Bk E &**?«•
i=-l *=1 ¡=I

This is a formal statement of the fact that the general solution may be ex-

pressed directly in terms of linear combinations of the n boundary param-

eters. It now becomes evident that for a given equation of order n, if n arbi-

trary but linearly independent solutions y¿ of equation (2) and any particular

solution yp of equation (1) are obtained, then the solution to the problem

with any desired values of divided boundary parameters, Bi, B2, ■ ■ ■, Bn,

known at any points within the interval (a0, ¿>o), maY be obtained by direct

substitution into equation (6). It should be emphasized that y< and yp are

any solutions  to  their respective  equations,  barring  linearly dependent
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y/s, without restriction on initial or final values. It is seen from equation (6)

that, if the boundary conditions are all homogeneous, then each B equals

zero and the solution is simply

y = Jv + £ biyt.
i-l

Also, if the equation is homogeneous but not all of the boundary conditions

are homogeneous, then

k=n i=n

y = £ Bk £ bi,kyi.
k—l ¿-1

The term in &¿y¿ is zero since 6,- is a linear combination of the fixed boundary

values of yp and its n — 1 derivatives, and these quantities exist only in the

non-homogeneous equation. If the equation and boundary conditions are all

homogeneous, then it is apparent that y = 0, and there is no problem.

The advantage of expressing the solution directly in terms of the bound-

ary parameters will now be illustrated for a fourth-order equation with

boundary values B\ and B2 existing at x = a and B3 and Bt existing at

x = b. The limits a, b are ordinary points of the interval (ao, b0). For n = 4,

the solution y and its first n — 1 derivatives may be written from equa-

tion (6) as

y = 5x7! + B2Y2 + B3Y3 + BtYt + Y
dy/dx = B^dYi/dx) + etc.,        d2y/dx2 = Bx(d2Yi./dxt) + etc.,

d3y/dx3 = B1(d?Y1/dx3) + etc.,

where Yi, Y2, Y3, Yt are linear combinations of y\, y2, y3, y\, and F is a

linear combination of the same y's and yp. Now consider the problem of a

machine or step-by-step solution starting at x = a where the two boundary

parameters have the desired values B\ = ßi and B2 = ß2. From the two

boundary relations at x = a given by equation (4) we may write

ßi = [>i,oy + ai,i(dy/dx) + aX2(d2y /dx2) + a^^d'y/dx3)^^,

ßi = ía2,0y + a2,i(dy/dx) + a2,2(d2y/dx2) + a2,3(d3y/dx3)2x-a

from which two of the initial values of the derivatives may be solved in

terms of the remaining two. Thus, for any arbitrary values assigned to

yx=a and (dy/dx)x=a, the values of the second and third derivatives at x = a

may be calculated.6 With B\ and B2 assigned the values ß\ and ß2, respec-

tively, the solution and its first derivative become

y = 58F3 + B4Yi + Yt,       dy/dx = BsdY3/dx + BdYi/dx + dY6/dx,

where F6 is the new function, Y + ßiYi + ß2Y2. At x = a, F,- and dYj/dx
(where j = 3, 4, 5) assume fixed values so that

(7)       yx_a = dsB3 + diBi + d6,        (dy/dx)x^a = e3B3 + ejii + e6,

where the ¿'s and e's are constants. Equations (7) show that the initial

values of y and dy/dx are related linearly to the boundary parameters at

x = b. This linearity may be represented graphically as shown in Fig. 1.

Although the existence of these linear families of boundary parameters is

now established, their determination is still unknown for any trial solution.
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Assume now that the problem at hand requires that B3 = ß3 and B4 = ßt

at x = &. It is readily seen that there exists a point 5 which defines the proper

initial choice of yx_a and (dy/dx)x=a- It is also evident from the linearity of

equations (7) that, in proceeding on a straight line joining any two points,

such as 1 and 2 in Fig. 1, the values of B3 and B\ will vary linearly with the

distance measured along that line. With these facts in mind, let us make

three separate trial solutions with any arbitrary combination of yx„a and

(dy/dx)x=a which define three non-collinear points 1, 2, 3. The initial values

of the second and third derivatives for each trial are of course determined

so as to satisfy B\ = ßi and B2 — ß2 at x = a. When these trial solutions

have reached x = b, the values of y and its three derivatives at this point

are used to calculate B3 and Bt. By linear interpolation point Pi which

represents a point where B3 equals the desired value ß3 may be located on

line 1-2. Likewise points P2 and P3 which lie on the desired ß3 line are located

by linear interpolation and extrapolation along lines 2-3 and 3-1. Similarly

points Q\, Q2, Q3 are located on the desired ßi line. These two parameter lines

may now be constructed and the desired solution point 51 determined by

their intersection.

POSSIBLE
VALUES

>F  B,

x=ct

AT X=b

POSSIBLE
VALUES
B, AT X.= b

Yx=a
Fig. 1. Control plot for solution of fourth-order linear differential

equation with equally divided boundary values.

Although the desired boundary conditions can now be satisfied with a

fourth solution which begins with the correct combination of yx-a and

(dy/dx)x=a, it is not necessary to effect this fourth solution. For any particular

value of x in the interval (a, b), the correct values of y and its derivatives

may be obtained by linear interpolation and extrapolation to the solution

point S from the corresponding values at points 1, 2, 3. This further linearity

is at once evident from equations (7) if we replace B3 and Bt by any two of

the derivatives of y at this particular value of x.

Consider next a sixth-order equation with three boundary conditions

known at x = a and the other three at x — b. Here, there is a triple latitude

of possible choices of the three initially unknown values of y and its five

derivatives at x = a and only one unique combination will satisfy the given
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conditions at x = b. To solve this problem, we may visualize, in place of

Fig. 1, three families of parallel planes in a three-dimensional space defined

by the three initial values of y and its derivatives which are unknown. To

determine the solution point S representing the common intersection of the

three boundary-value planes will require four different trial solutions, each

satisfying the three conditions at x = a. These trials will define four non-

coplanar points in the three-dimensional space. Linear interpolation and

extrapolation along any three non-coplanar lines joining these points will

determine three sets of three points, each set uniquely defining one of the

desired boundary-value planes. Again the values of y and its derivatives can

be obtained at point 5 for any value of a; by a three-dimensional linear

interpolation and extrapolation from the four points.

In the case of a second-order equation with its two boundary conditions

divided, only two trials, each satisfying the initial condition at x — a, are

necessary to establish the solution. The relationship is shown graphically in

Fig. 2 where the solution point 5 is determined by the linearity along the line

joining the trial points 1 and 2.

HI
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X
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O D
cQcy

DESIRED VALUE

(0FB s

^2
CORRECT

f^ INITIAL VALUE

INITIALLY   UNKNOWN  y
OR   DERIVATIVE  AT X=a

Fig. 2. Control plot for solution of second order linear differential
equation with equally divided boundary values.

So far, only cases of equally divided boundary conditions have been

discussed. If unequal division occurs, the solution should be started at the

point where the greater number of known conditions exists. In the case of a

fourth-order equation where three conditions are known for x = a, only

one derivative of y is unknown, and two trials will be sufficient for solution.

Boundary conditions need not exist at the extremities of the interval of

solution. In such cases the solution may begin at a point within the interval

where at least half of the conditions are known. It will be necessary to re-

verse the direction of the independent variable in order to cover the com-

plete range, but otherwise the procedure will be the same.

The following rules may be stated from the foregoing development.

They hold for any ordinary linear differential equation of order n defined

by equation (1) where K boundary conditions are known at one point within
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the interval of solution and the remaining n — K conditions are known at

some other point within the interval. If K < n/2, only K + 1 trial solutions

with K + 1 arbitrarily selected initial values of the initially unknown de-

rivatives are required to determine uniquely the desired solution which

satisfies all boundary conditions. If data for the solution for any or all

possible combinations of the n boundary conditions are required, then any

n solutions, barring linearly dependent ones, of the homogeneous equation

without reference to initial conditions and any one solution of the complete

equation, or a total of n + 1 arbitrary trial solutions, must be made.

Discussion. Although the n + 1 trial solutions are sufficient to solve all

boundary value problems for a given equation, in most practical cases,

where interest is centered on a given set of boundary values, the method

described using K + 1 trials, where K < n/2, will be the simpler procedure.

Even in this case K + 1 families of solutions may be had with the K + 1

trials, since any boundary value at x = b for each of the K boundary param-

eters and any value of b within the interval (a0, b0) may be used. All of these

solutions must satisfy the same conditions at x = a.

Graphical illustration has been used to describe the linearities involved

in order to aid in visualizing the problem. The solution point and the values

of the various functions at this point may be determined by direct solution

of the linear relationships involved. And indeed, if it is necessary to discuss

an equation of order higher than the sixth, our spatial visualization which is

limited to three dimensions would not aid in this problem. If the method

of the » + 1 trials is adopted, the use of determinants will facilitate the

necessary computation of Z>¿ and £>,,& in equation (6).

There are several practical considerations which place some limits on the

success of these methods. It is essential that the distances between the trial

points be of the same order of magnitude as the distance from any point to

the solution point. Although the danger of interpolation and extrapolation

on curved lines is absent, still the errors inherent in any machine or numerical

solution will limit the extent of accurate extrapolation. It is usually possible

in most physical problems by approximation, comparison, and reasonable

guessing to predict the general region of solution and thus choose trial

points which are not too far removed from the solution point. If a reasonably

close estimate cannot be made, any K + 1 trials will point to the approxi-

mate location of 5 whereupon K + 1 additional trials in the neighborhood

of 5 will yield the solution.
In order to insure sufficient accuracy in the results, a reasonable estimate

of the range of magnitudes of y and its n — 1 derivatives must be made in

the case of a machine solution. It may be necessary to repeat one or more

trials with adjusted scale factors if the estimate is far in error.

Although K + 1 trial solutions are mathematically sufficient for solu-

tion, one or two more may be desirable in the case of a machine solution

as a check on the accuracy of the work. In the case of the fourth-order equa-

tion with equally divided boundary values, the triangular configuration of

trial points shown in Fig. 1 might well be replaced by four points represent-

ing the corners of a square. Any three of the six possible line segments

joining the four points may be considered as locating these points. These

three segments then determine independently three points on the desired
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parameter line. The remaining three segments may be considered as de-

pendent on the first three and hence will determine three dependent points

on the same parameter line.

The method described in this paper has been used successfully by the

author in the solution of a problem in the theory of shells involving a fourth-

order equation with equally divided boundary conditions. Triangular sets

of trial points in the machine solution used were adequate.

In the case of non-linear equations or linear equations where the bound-

ary conditions are non-linear a procedure similar to that described in the

foregoing paragraphs is suggested. In this case graphical representation

would be indicated, and, in a control plot corresponding to Fig. 1, the families

of lines representing boundary parameters would no longer be straight lines

or linearly spaced. However, by the principle of uniqueness of solution, it is

evident that any one boundary parameter line of one family will not cross

any other boundary parameter line of the other family more than once.

Also, if a reasonably good initial estimate is made, it should be possible to

converge on the solution with a few successive sets of trial points.

J. L. Meriam
Univ. of California
Berkeley

1 E. L. Ince, Ordinary Differential Equations. New York, 1944.
* A. R. Forsyth, A Treatise on Differential Equations. Sixth ed. London, 1933.
31. S. & E. S. Sokolnikoff, Higher Mathematics for Engineers and Physicists. New York,

1941.
4 The criterion for linear independence of these solutions is that the Wronskian of the

y¡'s (where i = 1, 2, 3, • • • ») and their » — 1 derivatives does not vanish.
6 Boundary values are said to be linear if they can be expressed as linear combinations

of the dependent variable and its « — 1 derivatives.
• If in some actual problem yx-a and (dy/dx)x„a, for example, took on assigned boundary

values, then these may not be changed. Thus (d2y/dx2)x-a and (d3y/dx3)x-a would be the
unknown initial quantities.
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