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to invert B is re divisions of a vector by p¡. When vy = 1, A = R and

T — -B"""1, and hence <j2} = Prl(B~l)ij[l — pj(B~l)a~\, corresponding to the

variance of the binomial distribution.
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1 The preparation of this paper was sponsored (in part) by the Office of Naval Research.
2 A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, New York, 1946,

p. 59. The writers are indebted to T. E. Harris for this reference.
* The fact that an = °° does not interfere with the convergence of the average value

of N games to (5-1),,-. However, conventional error estimates in terms of variances no
longer apply and, in at least certain matrix inversions where an = •*>, the accumulated
payment after N games cannot be normed so as to be asymptotically normally distributed
as N—► oo. See W. Feller, "Über den zentralen Grenzwertsatz der Wahrscheinlichkeits-
rechnung," Mathematische Zeitschrift, v. 40, 1935, p. 521-559 and v. 42, 1937, p. 301-312,
and "Über das Gesetz der grossen Zahlen," Szeged, Acta Univ., Acta Scient. Math., v. 8,
1937, p. 191-201.

* It is this case which we learned from von Neumann and Ulam.

Maximum-Interval Tables

Both the article by Herget & Clémence [MTAC, v. 1, p. 173-176] and
the note by Miller [MTAC, v. 1, p. 334] on optimum-interval tables ignore

the possibility of a continuously variable interval. It is of some interest to

examine the reduction in the number of entries made possible by what might,

by analogy, be termed "maximum-interval" tables. Using the principles of

optimum-interval tables, with the modifications suggested by Miller, the

tabular values of the argument are no longer restricted to terminating deci-

mals so that the interval may be allowed to assume at each point the

maximum value consistent with the stated allowable error.

The chief objection to a punched-card table in this form is that all (or

nearly all) of the digits in the argument will have to be used in the inter-

polating factor. In some cases this objection could be overcome by inserting

additional cards corresponding to values of the argument terminating in the

appropriate number of zeros, or by splitting the whole range into a number

of sub-ranges, in each of which the allowable error is varied slightly to make

tabular arguments coincide with the end-points; or, of course, by an addi-

tional operation of subtraction. Generally, however, the saving in cards is

not worth the additional cost of preparation and the resulting complication.

Herget in The Computation of Orbits [see MTAC, v. 3, p. 418-9]
gives an optimum-interval table of x~312 using quadratic interpolation, with

a note "This is the first time such a table has ever been printed for use with

a hand calculating machine." A human computer can easily exercise the

requisite judgment to use the continuously variable intervals of a maximum-

interval table; in the simplest case it will involve nothing more serious than

allowing the interpolating factor occasionally to exceed unity in a particular

digit. A punched-card machine can only do this at the expense of a separate

operation. There may, therefore, be a use for variable interval tables in

computation by desk machines.
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The chief field of use is likely to be in connection with automatic digital

computers, since the number of operations and the number of digits in the

multipliers is often less critical than the amount of high-speed storage

required. With cubic and quartic interpolation the number of entries re-

quired is very small indeed.

Before considering the theory of these tables, it is desirable carefully to

examine the significance of "error" as applied to values obtained by inter-

polation. Corresponding to the function tabulated and the conditions of its

use the error may be assessed in four ways: as an absolute or relative error

in the tabulated function, or as relative to an absolute or relative error in

the argument. Examples of these four cases are :

(a) sin x, to a stated number of decimals; here the error is absolute.

(b) xm, with a stated percentage error as is always required when multi-

plying factors are used to extend tables for a limited range of the argument;

here the error is relative to the tabulated function.

(c) sin x, with an accuracy corresponding to a stated absolute error (e.g.,

0°.0001 or 1") in the argument.
(d) xm, with an accuracy corresponding to a stated relative error (say 1

in 10') in the argument.

Each of these cases may occur and it is essential that the appropriate

one should be adopted if the utmost economy in number of entries is to be

achieved. Errors arise from several sources, but all except those due to

approximations made in the interpolating formula can be substantially and

effectively reduced by the retention of an additional, or guarding, figure;

it will be assumed that this is always done in the type of table to be dis-

cussed, so that the theoretical errors of approximation may be directly

equated with the allowable, or stated, errors.

The Taylor series for a function y of x at x = a -f- t may be replaced, in

the range — \h ^ / ^ + %h, by a series in terms of Chebyshev polynomials :x

(1) y(a + t) = a0 + aiCi(4t/k) + a2C2(4t/h) +■■■+ apCP(4t/h) + ■ ■ ■

where Cp(£) = 2 cos (p arceos !£) is the Chebyshev polynomial of degree p

and where

(2) aP = ̂  U +      <»*>'     y™ +_ÖS_y™ +..■}
W   «»      pl  jy    +v{p + i)y      + 2Kp + i)ip + 2)y      +     }

in which y<p) is the pih derivative of y at x = a.

It is known that the truncation of (1) after the «th term will provide the

most efficient polynomial approximation of degree (re — 1) to the function

y(a + t) in the range — \h ^ t ^ + \h. The leading term of the maximum

error of the approximation is clearly 2an, which may for the present purpose

be simplified to:
hr

n\22
(3) —-— il«

This may now be equated to the allowable error to give the maximum

permissible value of A as a function of x. If «i, e2, u and e4 are respectively

the maximum absolute and relative errors allowable in y and x, then (3)

must be equated with:

(a) «i        (b) t2y        (c) e3y'        (d) uxy'
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where the signs of the t's are chosen so that hn is positive.

Let z be an auxiliary variable which takes integer values corresponding

to the values of x at which y is to be tabulated. Then, to a very good approxi-

mation, h may be identified with dx/dz so that we obtain the following ex-

pression for 2 in terms of x :

(4) 2=1    hrHx.

This will give z as a function of x, and in due course x, y and its deriva-

tives as functions of z from which the table can be prepared.

For a simple power of x,

y = xm (m not a positive integer) ;

substitution in and integration of (4) with the condition that z = 0 at

x = 1, gives:
(a)    z = erlln(n/m)b(m, re)(l - xmln)

,,\ (b)    z = e2~llnb(m, re) In x

W (c)    z = (reie3)-1'"w6(rei,«)(l - x1'")

(d)   z = (ma)~llnb(m, re) In x

where

± b(m, re) = [m(m - 1) • • • (m - n + l^1-2"/»!]1'",

the sign being taken to make z positive. Cases (b) and (d) are, of course,

identical in form. These expressions enable the number of entries for a

particular range of x to be determined at once.

For example, in the seven-decimal table of reciprocals considered by

Herget & Clémence the value of «i is taken as 5 • 10~7. A more realistic ar-

rangement would arise from specifying maximum relative errors; a com-

parable table should therefore be based on t2 = t4 = 5 • 10~1,/2, the geometric

mean of the relative errors at beginning and end. Case (c), of a stated

maximum absolute error in x, may well arise in practical computation; e3

can be taken as 5 • 10-7. The corresponding expressions for z are:

(a)    z = i«(4-10«)1/n(l - x-1/n)

(b), (d)    2 = i(4-1011/2)1'Mnx

(c)    2 = iw(4-106)1'"(x1/» - 1)

The number of entries required in a table to cover the range x = 1 to 10,

with re = 2, 3, 4 (corresponding to linear, quadratic and cubic interpola-

tion), are:

w=2 re=3          w=4
(a)          685 65                21

(b), (d)         648 64               21
(c)       2163 139               36

The reduction to 685, for case (a), as compared with the 1368 of Herget

& Clémence and the 924 of Miller is substantial. There is here little difference

between the requirements of cases (a), (b), and (d), though (b) is certainly

the more realistic table. The very considerable reduction effected by the

inclusion of a quadratic term would suggest that it might well be worth

while introducing the additional step into the interpolation.
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As a second example, consider a table of x~m with a maximum relative

error of 10-7 which corresponds approximately to that of Herget's table.

The number of entries (case (b)) required are:

re = 2 (linear) 3526.
re = 3 (quadratic) 204, as compared with Herget's 316.

re = 4 (cubic) 50.

The coefficients of the interpolating polynomial of degree (re — 1) are

obtained by expanding the individual terms of the truncated series (1) and

rearranging as a power series in /. This series is then appropriate to the range

— \h ^ t ^ \h. In order to facilitate computation it is desirable still further

to transform the series as a power series in s where

s = (a + t) — Xo

and xo is a value of x terminating with several zero digits. It is only necessary

to retain sufficient figures in the coefficients of powers of 5 to cover the range

appropriate to t, provided they are rigorously consistent with the coefficients

in the /-series; they should be calculated one at a time starting with that

of sn_1, which is of course the same as that of tn~l.

It will be noted that for y = xm, y in case (a) and x in case (c) are both

polynomials in z of degree re — 1. In cases (b) and (d) both x and y are of

exponential form; since the coefficient of In x in (5) does not change rapidly

for small changes in m, it would be possible to use the same series of values

of x (or of y) for a number of fractional powers.

In his note Miller referred to the previously accepted convention of not

modifying function values to reduce the error due to neglect of second

differences. Actually such modification (for a slightly different reason) is in

use in both the British and American surface and air almanacs ; but in many

cases there are sound reasons why the tabular values should be more accurate

than the interpolates. It is possible to reduce considerably the error due to

neglect of second differences without modifying the function values: in

principle, the first difference is modified so that the error at the end of the

range is numerically equal, with opposite sign, to the maximum error in the

range. Specifically 1(3 — 2\2) = 0.043 of the double second difference is
subtracted from the first difference; the error is then —0.043 of the double

second difference at the end of the interval and +0.043 at a point 0.414

along the interval. This error compares with 0.0625 without modification

and 0.03125 with modification of the function. The device has obvious dis-

advantages, but it has some valuable applications—mainly in navigational

tables.
D. H. Sadler

Royal Greenwich Observatory

Herstmonceux Castle, Sussex

1 This development is taken, with only slight change of notation, from Miller's paper
"Two numerical applications of Chebyshev polynomials," R. Soc. Edinburgh Proc Sec. A,
v. 62, 1946, p. 204-210. It is, of course, simple to obtain the optimum expansions for small
values of n by direct methods.
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