Formulas for calculating the error function of a complex variable
Author:
H. E. Salzer
Journal:
Math. Comp. 5 (1951), 6770
MSC:
Primary 65.0X
DOI:
https://doi.org/10.1090/S00255718195100481503
Corrigendum:
Math. Comp. 6 (1952), 61.
MathSciNet review:
0048150
Fulltext PDF Free Access
References  Similar Articles  Additional Information

J. Burgess, “On the definite integral $\frac {2}{{\sqrt \pi }}\int _0^t {{e^{  {t^2}}}dt}$ with extended tables of values,” R. Soc. Edinburgh, Trans., v. 39, part II, 1898, p. 257321.
J. R. Airey, “The ’converging factor’ in asymptotic series and the calculation of Bessel, Laguerre and other functions,” Phil. Mag., s. 7, v. 24, 1937, p. 521552.
W. L. Miller & A. R. Gordon, “Numerical evaluation of infinite series,” Jn. Phys. Chem., v. 35, 1931, especially part V, p. 28562857, 28602865.
J. B. Rosser, Theory and Application of $\int _0^z {{e^{  {x^2}}}dx}$ and $\int _0^z {{e^{  {p^2}{y^2}}}} dy\int _0^y {{e^{  {x^2}}}dx}$. Part I. Methods of Computation, New York, 1948.
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Oxford, 1937, p. 6064.
E. T. Whittaker & G. N. Watson, A Course of Modern Analysis. Fourth ed., Cambridge, 1940, p. 124, 474476.
 E. T. Goodwin, The evaluation of integrals of the form $\int ^\infty _{\infty } f(x) e^{x^{2}} dx$, Proc. Cambridge Philos. Soc. 45 (1949), 241–245. MR 29281, DOI https://doi.org/10.1017/s0305004100024786
 A. M. Turing, A method for the calculation of the zetafunction, Proc. London Math. Soc. (2) 48 (1943), 180–197. MR 9612, DOI https://doi.org/10.1112/plms/s248.1.180 H. G. Dawson, “On the numerical value of $\int _0^h {{e^{{x^2}}}dx}$,” London Math. Soc., Proc., s. 1, v. 29, 1898, p. 519522. NBS, Tables of Probability Functions. V. 1, New York, 1941.
Retrieve articles in Mathematics of Computation with MSC: 65.0X
Retrieve articles in all journals with MSC: 65.0X
Additional Information
Article copyright:
© Copyright 1951
American Mathematical Society