Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Recent Mathematical Tables
HTML articles powered by AMS MathViewer

by PDF
Math. Comp. 6 (1952), 18-34 Request permission
References
    D. K. Faddeev, “Ob uravnenii [on the equation] ${x^3} + {y^3} = A{z^3}$,” Akad. Nauk S.S.S.R., Leningrad, Fiz-mat. Inst. imeni V. A. Stekloff, Trudy, v. 5, 1934, p. 25-40. N. Smirnov, “On the estimation of the discrepancy between empirical curves of distribution for two independent samples,” Moscow, Univ., Bull. Math., (série internationale), v. 2, 1939, fasc. 2, 16p.
  • N. Smirnov, Table for estimating the goodness of fit of empirical distributions, Ann. Math. Statistics 19 (1948), 279–281. MR 25109, DOI 10.1214/aoms/1177730256
  • N. Smirnov, Table for estimating the goodness of fit of empirical distributions, Ann. Math. Statistics 19 (1948), 279–281. MR 25109, DOI 10.1214/aoms/1177730256
  • C. A. Williams Jr., “On the choice of the number and width of classes for the Chi-square test for goodness of fit,” Amer. Stat. Assn., Jn., v. 45, 1950, p. 77-86.
  • R. A. Fisher, The negative binomial distribution, Ann. Eugenics 11 (1941), 182–187. MR 6689, DOI 10.1111/j.1469-1809.1941.tb02284.x
  • J. B. S. Haldane, The fitting of binomial distributions, Ann. Eugenics 11 (1941), 179–181. MR 6688, DOI 10.1111/j.1469-1809.1941.tb02283.x
  • See FMR Index, p. 202-203.
  • N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford, at the Clarendon Press, 1947. MR 0021158
  • Harvard University Computation Laboratory, Annals v. 3-14, Tables of the Bessel Functions of the First Kind of Orders Zero through Hundred Thirty-Five. Harvard University Press, 1947-1951. NBSCL, Tables Relating to Mathieu Functions, New York, Columbia University Press, 1951. See MTAC, v. 1, 1944, p. 248, 250, 304. See, for example: Scattering and Radiation from Circular Cylinders and Spheres; Tables of Amplitudes and Phase Angles [MTAC, v. 3, p. 107]. For other tables of Bessel Functions see MTAC, v. 1, p. 205-308. The new tables of Bessel Functions [MTAC, v. 5, p. 223-224] published by the Harvard Computation Laboratory will be most useful as soon as the corresponding second solutions are published. See, for example: H. Tallqvist, “Tafel der 24 ersten Kugelfunktionen ${P_n}(\cos \theta )$ [MTAC, v. 1, p. 4], and also MTP, Tables of the Associated Legendre Functions [MTAC, v. 1, p. 164-165] and Tables of Spherical Bessel Functions [MTAC, v. 3, p. 26].
  • D. F. Ferguson and M. J. Lighthill, The hodograph transformation in transsonic flow. IV. Tables, Proc. Roy. Soc. London Ser. A 192 (1947), 135–142. MR 23397, DOI 10.1098/rspa.1947.0143
  • Vera Huckel, Tables of hypergeometric functions for use in compressible-flow theory, Tech. Notes Nat. Adv. Comm. Aeronaut. 1948 (1948), no. 1716, 13. MR 0027594
  • George Pólya, Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math. 6 (1948), 267–277. MR 26817, DOI 10.1090/S0033-569X-1948-26817-9
Additional Information
  • © Copyright 1952 American Mathematical Society
  • Journal: Math. Comp. 6 (1952), 18-34
  • DOI: https://doi.org/10.1090/S0025-5718-52-99410-6