## Recent Mathematical Tables

HTML articles powered by AMS MathViewer

- by PDF
- Math. Comp.
**7**(1953), 84-103 Request permission

Corrigendum: Math. Comp.

**7**(1953), 213.

## References

- J. M. Boorman, “Square-root notes,”
- J. W. S. Cassels,
*The rational solutions of the diophantine equation $Y^2=X^3-D$*, Acta Math.**82**(1950), 243–273. MR**35782**, DOI 10.1007/BF02398279 - Ronald A. Fisher and Frank Yates,
*Statistical Tables for Biological, Agricultural and Medical Research*, Oliver and Boyd, London, 1948. 3d ed. MR**0030288** - A. Hald and S. A. Sinkbæk,
*A table of percentage points of the $\chi ^2$-distribution*, Skand. Aktuarietidskr.**33**(1950), 168–175. MR**39955**, DOI 10.1080/03461238.1950.10432038 - Maxine Merrington and Catherine M. Thompson,
*Tables of percentage points of the inverted beta ($F$) distribution*, Biometrika**33**(1944), 73–88. MR**11410**, DOI 10.1093/biomet/33.1.73
L. H. C. Tippett, “On the extreme individuals and the range of samples taken from a normal population,” - E. S. Pearson,
*The probability integral of the range in samples of $n$ observations from a normal population. I. Foreword and tables*, Biometrika**32**(1942), 301–308. MR**6641**, DOI 10.1093/biomet/32.3-4.301 - A. Hald,
*Statistical theory with engineering applications*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1952. MR**0049514**
E. C. Molina, - E. S. Pearson and H. O. Hartley,
*Tables of the probability integral of the Studentized range*, Biometrika**33**(1943), 88–99. MR**10948**, DOI 10.2307/2333622 - K. R. Nair,
*The distribution of the extreme deviate from the sample mean and its Studentized form*, Biometrika**35**(1948), 118–144. MR**25125**, DOI 10.1093/biomet/35.1-2.118 - P. B. Patnaik,
*The use of mean range as an estimator of variance in statistical tests*, Biometrika**37**(1950), 78–87. MR**36484**, DOI 10.1093/biomet/37.1-2.78 - John W. Tukey,
*Comparing individual means in the analysis of variance*, Biometrics**5**(1949), 99–114. MR**30734**, DOI 10.2307/3001913 - E. S. Pearson and H. O. Hartley,
*Tables of the probability integral of the Studentized range*, Biometrika**33**(1943), 88–99. MR**10948**, DOI 10.2307/2333622 - Geoffrey H. Moore and W. Allen Wallis,
*Time series significance tests based on signs of differences*, J. Amer. Statist. Assoc.**38**(1943), 153–164. MR**8323**, DOI 10.1080/01621459.1943.10501791 - P. B. Patnaik,
*The use of mean range as an estimator of variance in statistical tests*, Biometrika**37**(1950), 78–87. MR**36484**, DOI 10.1093/biomet/37.1-2.78 - John W. Tukey,
*Some sampling simplified*, J. Amer. Statist. Assoc.**45**(1950), 501–519. MR**40624**, DOI 10.1080/01621459.1950.10501142 - F. N. David and M. G. Kendall,
*Tables of symmetric functions. I*, Biometrika**36**(1949), 431–449. MR**33788**, DOI 10.1093/biomet/36.3-4.431
BAASMTC, *Tables of Spherical Bessel Functions. Vol. I*, Columbia University Press, New York, 1947. Prepared by the Mathematical Tables Project, National Bureau of Standards. MR**0019393**
See, for example, N. Rosen, “Interaction between Atoms with $s$-Electrons,” Phys. Rev., v. 38, p. 255, 1931.

*The Mathematical Magazine*, v. 1, 1887, p. 208.

*Biometrika*, v. 17, 1925, p. 364-387.

*Poisson’s Exponential Binomial Limit*. New York, 1942. [

*MTAC*, v. 1, p. 18.] A. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione,” Inst. Ital. Attuari,

*Giorn.*, v. 4, 1933, p. 83-91. N. Smirnov, “On the estimation of the discrepancy between empirical curves of distribution for two independent samples,”

*Bull. Math, de l’Univ. de Moscou*, v. 2, 1939, fasc. 2. 16 p. The table referred to was also reproduced in

*Annals Math. Stat.*, v. 19, 1948, p. 279-281.

*Bessel Functions*, Part I. Cambridge, 1937, xx + 288 p. W. S. Aldis, Roy. Soc.

*Proc.*, v. 64, p. 203, 1899, and v. 66, p. 32, 1900. Harvard Computation Laboratory,

*Tables of Bessel Functions of the First Kind for*$n = 0$ to 135, vols. III to XIV, 1947-1951, Harvard U. Press, Cambridge, Mass. NYMTP,

*Tables of*${J_0},{J_1}$

*and*${Y_0},{Y_1}$

*for Complex Arguments*, 1943 and 1950, Columbia University Press, New York. R. P. Feynman, N. Metropolis, & E. Teller, “Equations of state of elements based on the generalized Fermi-Thomas Theory,”

*Phys. Rev.*, s. 2, v. 75, 1949, p. 1561. J. C. Slater & H. M. Krutter, “The Thomas-Fermi method for metals,”

*Phys. Rev.*, s. 2, v. 47, 1935, p. 559.

## Additional Information

- © Copyright 1953 American Mathematical Society
- Journal: Math. Comp.
**7**(1953), 84-103 - DOI: https://doi.org/10.1090/S0025-5718-53-99370-3