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Polynomial-Like Approximation

Frequently, in machine computations, one may substitute for a function

of relatively complicated analytic structure a function of simpler form with-

out appreciable error. Moreover, if the function is given tabularly, a con-

siderable reduction of tabular input data (load on the memory) may be

achieved. In what follows, we deal with real-valued functions of continuous

real variables x, y, • • •. Computationally, it is usually better to work with

variables assuming finitely many discrete values. In the formulas which fol-

low, however, the discrete analogues are apparent, integration to be replaced

by summation, etc. We have in mind multivariate approximations by poly-

nomial-like forms, in particular, by functions M of the form

(1) M(x, y) = ¿ <j>3(x)Uy),

in the bivariate case. Some of the following results are generalizable to func-

tions of more than two variables.

Of special interest is the so-called slide rule form, f(x) + g(y). We shall

give formulas for approximating to a given real-valued continuous function,

defined over the unit square 0 < x, y < 1 to minimize, respectively, each

of the following measures of goodness of fit:

(a) I     I    [z(x, y) - f(x) - g(y)Jdxdy,    and
Jo   Jo

(b) max   \z(x, y) -f(x)-g(y)\.
0<x, y<\

A simple variational technique yields for (a) :

f(x) =   I   z(x, y)dy + c0,    and
Jo

g(y) —   I    2(x, y)dx + Ci,    where

Co and ci are any real numbers such that

Co + Ci = —   I     I    z(x, y)dxdy.
Jo  Jo

Recursive formulas for (b) are based heuristically on the fact that given

two numbers a and b, one can approximate to them by a single number c;

taking c to be the arithmetic mean of a and b minimizes the maximum abso-

lute error. The recursive formulas for (b) are as follows :

fn+i(x) = \ Í max [z(x, y) - g„(y)] + min [z(x, y) - gn(y)]},

gn(y) = \ { max [z(x, y) - /»(*)] + min [z(x, y) - /„(*)]},
X X

and/o arbitrary but continuous, n = 0, 1,- • •. Diliberto & Straus1 have

shown quite generally that the above process converges to a pair of continu-
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ous functions (/, g) which has the required property. Included in their dis-

cussion is a precise method, discovered independently by the writer, for

estimating the value of the minimum. In this connection, the reader is

referred to their paper.

We now return to the more general form (1). Let n > 0 be a prescribed

integer. We assume that z (continuous over the unit square) is not of the

form (1) for this particular n. We shall give two sets of formulas for approxi-

mating to z by continuous functions of the form (1), which satisfy respec-

tively :
(c) The error vanishes on some rectangular grid of lines x — Xi, x^,- ■ ■, xn,

y = Vu Vi, • • • i yn (*< j* x¡ and y i ^ y¡ if i ^ j)

(d) I z(x, y) — 23 fßiixWAy) I dxdy is minimized.

For (c), functions <p¡, \[/¡ can be computed successively as follows. Choose a

point (xi, yi) such that z(xi, yi) ¿¿ 0 and two constants ci, C\ such that

CiCi  = \/z(x\, yi) and set

<t>i(x) = c1z(x,y1)    and    ^i(y) = c1'z(x1, y).

We compute 02 and yj/2 in precisely the same manner, except that z is now

replaced by a new function z2 given by

Zi(x, y) = z(x, y) - fc(x)fi($y.

Thus, we choose a point (x2, y2) such that 22(3:2, yi) t* 0, and two constants

c2, cí such that C2C2' = 1/22(3:2, y2) and set

02(*) = c&2(x, y2)    and

fa(y) = c2'z2(x2, y).

We continue in this manner, with

zk+i(x,y) = zk(x,y) - 4>k(x)fk(y)

until we have the required number of functions. A simple inductive argu-

ment shows that condition (c) is satisfied.

That the solution of problem (d), i.e. finding a least squares fit to z of

the form (1), bears a direct relationship to the theory of integral operators

in Hubert space was pointed out by G. W. Brown a few years ago. His

observations are essentially these :

Let Xi, X2, ■ ■ ■, X„ be the largest n eigenvalues of the symmetric kernel

K(x, y) =        z(x, t)z(y, t)dt

and 0i, 02, • • •, 0n be corresponding eigenfunctions  (normalized so that

I   (¡>?(x)dx = 1) and set

^i(y) =   I   *(*■ y)<t>,(x)dx,   j = 1, 2,- • -, n,
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then the 0's and ^'s defined in this way form a solution to (d), the 0's being

mutually orthogonal and the ^'s being mutually orthogonal. The computa-

tions can be carried on sequentially. Let Xi be the largest eigenvalue of K, 4>\

a corresponding normalized eigenfunction and \pi defined as above. Having

found 0i and \¡/x we form the symmetric kernel, Ki associated with the

residual function z(x, y) — <j>i(x)if/i(y). Then, the largest eigenvalue of Kx is

the next largest eigenvalue of K and we take 02 to be the corresponding

normalized eigenfunction with \p2 defined as above. We continue in this

manner until we have the required number of functions. Incidentally, for

n = 1, a variational technique yields the necessary conditions for an

extremum :

<f>(x) =   I   z(x, y)yp(y)dy/ I   ^(y)dy,
Jo Jo

if/(y) —   I    z(x, y)(j>(x)dx/ I    <t>2(x)dx.
Jo Jo

These can be used to generate an iterative computation for 0 and yf/. How-

ever, questions of convergence, proper initiating functions to achieve the

largest eigenvalue, etc. seem to be difficult. One final remark—the minimum

value of   I [z(x, y) — J2 <j>j(x)\pj(y)~¥dxdy is precisely the sum of the
Jo      Jo fm.1

remaining eigenvalues of K, i.e. the sum of the eigenvalues minus the sum of

the largest n eigenvalues, the former sum being equal to f J"z2dxdy.
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1 S. P. Diliberto & E. G. Straus, "On the approximation of a function of several vari-
ables by the sum of functions of fewer variables," Pacific Jn. of Math., v. 1, p. 195-210, 1951.

A Logarithm Algorithm

The method of calculating logarithms given in this paper is quite unlike

anything previously known to the author and seems worth recording be-

cause of its mathematical beauty and its adaptability to high-speed com-

puting machines. Although there are well known methods1 which involve

continued fractions, these methods invariably utilize the analytic properties

of the logarithm function and not the arithmetic properties of the individual

logarithm. The first version of this algorithm is based directly upon such

arithmetic continued fractions. In a subsequent skeletonized modification,

however, continued fractions no longer appear explicitly.

Let a0 > «i > 1 be given. To find logeai we determine the two se-

quences
a2, 03,- • •

«1, «2, • • *,

where the n's are positive integers, by the relations

aini < a,_i < aini+1

ai+i = ai-i/ai"'".


