Recent Mathematical Tables
HTML articles powered by AMS MathViewer
- by PDF
- Math. Comp. 8 (1954), 216-226 Request permission
Corrigendum: Math. Comp. 9 (1955), 45.
References
- L. E. Simon, An Engineer’s Manual of Statistical Methods. New York, 1941.
- G. A. Barnard, The frequency justification of certain sequential tests, Biometrika 39 (1952), 144–150. MR 48761, DOI 10.1093/biomet/39.1-2.144
- D. R. Cox, Sequential tests for composite hypotheses, Proc. Cambridge Philos. Soc. 48 (1952), 290–299. MR 47292, DOI 10.1017/s030500410002764x
- S. S. Wilks, Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Statistics 13 (1942), 400–409. MR 7592, DOI 10.1214/aoms/1177731537
- J. A. Stratton, P. M. Morse, L. J. Chu, and R. A. Hutner, Elliptic Cylinder and Spheroidal Wave Functions, Including Tables of Separation Constants and Coefficients, John Wiley & Sons, Inc., New York, 1941. MR 0008333 G. Jaffé, Zeit. Phys., v. 87, 1934, p. 535 (author’s citation).
- A. Leitner and R. D. Spence, The oblate spheroidal wave functions, J. Franklin Inst. 249 (1950), 299–321. MR 36364, DOI 10.1016/0016-0032(50)90981-1 J. Meixner, Lamé’s Wave Functions of the Ellipsoid of Revolution, translated by Mary L. Mahler, NACA, June, 1944.
- C. J. Bouwkamp, On spheroidal wave functions of order zero, J. Math. Phys. Mass. Inst. Tech. 26 (1947), 79–92. MR 22948, DOI 10.1002/sapm194726179
- R. L. Sternberg and H. Kaufman, A general solution of the two-frequency modulation product problem. I, J. Math. Physics 32 (1954), 233–242. MR 0061479, DOI 10.1002/sapm1953321233
Additional Information
- © Copyright 1954 American Mathematical Society
- Journal: Math. Comp. 8 (1954), 216-226
- DOI: https://doi.org/10.1090/S0025-5718-54-99324-2