Reviews and Descriptions of Tables and Books
HTML articles powered by AMS MathViewer
- by PDF
- Math. Comp. 9 (1955), 26-41 Request permission
References
-
R. A. Fisher & Frank Yates, Statistical Tables for Biological, Agricultural, and Medical Research. London & Edinburgh, 4th ed., 1953.
NBSCL, Tables of the Binomial Probability Distribution. AMS no. 6, Washington, 1950. [MTAC, v. 4, p. 208-209.]
R. A. Fisher & F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. London & Edinburgh, 1938.
Karl Pearson and Alice Lee, âOn the generalized probable error in multiple normal correlation,â Biometrika, v. 6, 1908, p. 59-68.
R. A. Fisher in BAAS Math. Tables, v. I, London, 1931, p. xxvi-xxxv.
- John W. Tukey, Some sampling simplified, J. Amer. Statist. Assoc. 45 (1950), 501â519. MR 40624, DOI 10.1080/01621459.1950.10501142
- F. N. David and M. G. Kendall, Tables of symmetric functions. I, Biometrika 36 (1949), 431â449. MR 33788, DOI 10.1093/biomet/36.3-4.431
- John Wishart, Moment coefficients of the $k$-statistics in samples from a finite population, Biometrika 39 (1952), 1â13. MR 50223, DOI 10.1093/biomet/39.1-2.1 H. Weiler, âOn the most economical sample size for controlling the mean of a population,â Ann. Math. Stat., v. 23, 1953, p. 247-254. H. Weiler, âThe use of runs to control the mean in quality control,â Amer. Stat. Assn., Jn., v. 48, 1953, p. 816-825. F. Wilcoxon, âIndividual comparisons by ranking methods,â Biometrics Bull., v. 1, 1945, p. 80-83.
- H. B. Mann and D. R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Statistics 18 (1947), 50â60. MR 22058, DOI 10.1214/aoms/1177730491
- T. J. Terpstra, The asymptotic normality and consistency of Kendallâs test against trend, when ties are present in one ranking, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 327â333. MR 0048751, DOI 10.1016/S1385-7258(52)50043-X L. R. Salvosa, âTables of Pearsonâs type III function,â Ann. Math. Stat., v. 1, 1930, following p. 198. NYMTP, âTable of sine and cosine integrals for arguments from 10 to 100.â New York, 1942.
- Pran Nath, Confluent hypergeometric function, SankhyÄ 11 (1951), 153â166. MR 44892
- Milton Abramowitz and H. A. Antosiewicz, Coulomb wave functions in the transition region, Phys. Rev. (2) 96 (1954), 75â77. MR 63494, DOI 10.1103/PhysRev.96.75 J. McDougall & E. C. Stoner, Roy. Soc. Phil. Trans., v. 237A, 1938, p. 67-104. 2 J. E. Robinson, Phys. Rev., s. 2, v. 83, 1951, p. 678-679.
Additional Information
- © Copyright 1955 American Mathematical Society
- Journal: Math. Comp. 9 (1955), 26-41
- DOI: https://doi.org/10.1090/S0025-5718-55-99116-X