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Notations for Partitions

The present paper gives a contribution to the automatic calculation of the

characters of certain symmetric groups, as described in a paper which recently

appeared in MTAC [1]. The repeated application of the recursion formula (7) of

the cited paper involves the storing of a chain of partitions. The allotted storage

space must be sufficient to meet even the case of a chain of as many as about n/2

partitions. In other words, provision must be made for storing about w2/4 integers,

components of these partitions. It would be a waste of memory space to store

these integers separated, numerous and small as they are. Furthermore, as n

increases, it will be still more important that the partitions should be available

in the rapid access storage of the machine. Therefore, they should be stored by

some method of packing, suitable for the operations to be applied, particularly

during the calculation of characters.

In the sequel, I shall briefly describe three such methods, which might perhaps

be of some interest. The first method [2] was used in an experimental program

for character calculation with the Swedish relay computer BARK (August, 1953)

and also in the first version of the character program using the Swedish electronic

computer BESK (Spring, 1954). The second method is employed in the actual

version of this program (tested on BESK, June, 1954). The third method, a

modification of the second, has not yet been used in the program, though it is

described here for theoretical reasons.

Preliminaries. Theoretically, the minimum of the number, x, of binary digits

required to represent all the partitions of an integer n, is the smallest integer, not

less than log2P(w), where P(n), the number of the partitions, can be estimated

by means of Hardy-Ramanujan's formula [3]. The result obtained,

Xmin ~ W2/3 log2 e-Vw — log2 4«V3 ~ 3.70V« — log2 n — 2.79

indicates an ideal towards which the packing methods should lead.

If packing with fixed boundaries between the packed elements, one should

store the partition components, each diminished by 1. In this case, n must also

be stored. The value of x then lies between n and in/2. For example, in a 40 digit

register one can store the partitions of n < 30 by this method. It will be seen that
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our first and second methods yield slightly better values of x, namely x = 11

and x = n -f- 1, respectively, whereas our third method gives approximately

x < V32« + 4 — 2, which is, for n > 28, in better accord with the Hardy-

Ramanujan value.

Our notations for partitions are closely related to the Young diagrams of the

partitions [4], which are important in the Nakayama version [5] of the recursive

method. This version simplifies the calculation scheme, and it has, therefore, been

employed in our program.

It is essential, in the methods which we are going to describe, that the com-

puting machine is equipped with the operation known as "normalization [6]."

We assume that the machine represents numbers modulo 2 by N digit words,

the fractional part consisting of N — 1 binary digits, the remaining binary digit

being interpreted as sign digit. Because it is necessary to store the sign associated

to each partition appearing in the recursion formula, we shall represent the

partition itself entirely in the fractional part of a word.

First method. The partition (X) = (Xi, X2, •••.Xj,) is represented by the

number

L = 2~Xl + 2-Xl-X2 H-h 2-Xl~Xi!-x";

i.e., starting from the binary point, (Xi — 1) zeros followed by a 1, (X2 — 1)

zeros followed by a 1, etc. The last 1, which means 2~", is followed by zeros

(if n < N — 1). The number n need not be stored separately. For example, the

partition (5, 2, 2, 1, 1, 1) is represented, the sign digit omitted, by the fraction

L = .000010101111 (and then zeros).

We use shifts to read in the components of (X), normalizations to read them

out [2].

If the partitions of n are enumerated in decreasing lexicographical order, their

representing numbers L form an increasing series. Moreover, the transition from

one partition to the next is effected by the addition of 2~n+1 to L, followed by a

slight modification if necessary.

This method is still used in our character program in the routine for passing

from one partition to the next one, when several characters are to be calculated

in succession.

Second method. This time we write the partition

(X) = Xi"X2°2- • ■\mam

where Xi > X2 > • • • > Xm > 0 and all a< > 0, and put X< — X,+i = bt (i < m),

Xm = bm. The positive integers a,- and &»• (i = 1, 2, ■ • •, m) define the partition

completely. The partition is represented by a number L' constructed in the

following manner. Denoting by c an arbitrary, non-negative integer (usually,

c — 0). yet with the restriction c + ai + b\ + • ■ • + am + bm < N — 1, there are

in L', after the binary point, c ones (yet usually, c = 0), and then successively a\

zeros, bi ones, a2 zeros, &2 ones, etc. Eventually, remaining space after the last

bm ones is filled by zeros.

Again, we read in and out with the aid of shifts and normalizations.
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Each non-vanishing term in the recursion formula is due to the existence of

a so-called "hook [5] of length h" in the Young diagram, h being the actuated

component of the class partition. Such hooks are most easily recognized in the

number L', namely as a pair of a 0 and a 1, spaced h binary places from each other,

the 0 being the most significant digit in that pair. The sign of the corresponding

term of the formula is ( — V)z, where z is the number of zeros between the 0 and

the 1 which were said to form the pair. The removal of the hook is an operation

to be performed before the recursion formula is used again. It is equivalent to

the interchange of the two digits of the mentioned pair.

These operations, namely the searching for hooks, the determination of signs,

and the removal of hooks, form the essential contents of the calculation scheme.

We note that the removal of a hook will never cause an increase of the number of

digits of L'. Finally, the conjugate partition (a) is very easily found, being repre-

sented by the "complement on 1" of the number obtained by reading L' in the

reverse order. BESK has an instruction for shifting the multiplier register into

the accumulator in reversed order.

Third method. The methods just described imply that an integer, t, will be

represented by t digits. The fact that each digit is capable of two values is used

only to realize the boundaries between adjacent integers. A more efficient nota-

tion is obtained as follows. The integer t, which is to be packed together with other

integers, is first written in binary notation. The number, r, of requisite digits is

then represented by r digits, all ones or all zeros. The two parts of the representa-

tion thus obtained are most conveniently placed in the different halves of one

and the same whole word, t being placed in the half word containing the binary

point. Thus the normalization, being guided by r, gives us the value of / in binary

notation, unpacked.

It should be observed that such symbols as 1, 01, 001, etc., can be used here to

represent different values of t. In this way, the integers t = 1,2, 3, 4, 5, 6, 7, etc.,

will be represented by the symbols 0, 1, 00, 01, 10, 11, 000, etc., respectively,

the corresponding values of t being 1, 1, 2, 2, 2, 2, 3, etc. Therefore, if r is de-

termined so that

2T - 1 < t < 2*+1 - 1,

the number t will be written in t binary digits, constituting a number usually

read as t + 1 - 2T.

This "half-binary" notation could be used for packing the integers c, au

bi, • • •, am, bm, appearing in the second method. If the numbers of digits in the

binary notations of these integers are y, on, ßi, ■ ■ ■, am, ßm, respectively, we write

7 ones, ai zeros, ßi ones, etc., in the binary point half word, and the binary nota-

tions of c, d\, b\, etc., in the remaining half word. This gives us a notation for

partitions requiring a number of digits roughly proportional to V», as formerly

indicated.

Of course, the method could be iterated (writing t binarily, etc.), but this would

not give a very efficient notation for partitions.

Other applications. As an example, we indicate how the methods can be

applied to the storing of the factorization of an integer, n, into powers of primes.

Let pi (i = 1,2, • ■ •, m) be the primes dividing n, pi > p2 > • ■ ■ > pm > 2, and
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let a,- be the exponent denoting the highest power of pt still dividing n, a{ > 0.

Further, let the function f{x) mean the number of all existing primes <x. Putting

f(Pi) — fiPi+i) = bi (i < m), f(pm) = bm, we can use the second or third method

above to store the numbers ax, bu • • •, am, bm. These determine the factorization

completely.
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Determination of Steiner Triple Systems
of Order 15

1. Introduction. A Steiner Triple System is a set of subsets of n marks such

that: a) Each subset contains three distinct marks, b) each pair of distinct

marks appears in one and only one subset. It is easy to see that n = 1 or 3 (mod 6)

FT] and that the number of subsets is «(n — l)/6. For n = 3, 7, 9 there is one

and essentially only one such set, all others being obtained by permutation of the

marks. For n = 13, there are two distinct systems.

Using SWAC for the computations we have obtained the non-isomorphic

systems of order 15. During the course of the calculations, Prof. L. J. Paige

called our attention to a series of papers [2] which culminate in the listing by

F. N. Cole of a set of 80 systems of order 15 with proof that these are distinct

and an argument tending to show that the listing is exhaustive. Since following

the argument would entail tremendous hand calculation and since the number

80 was below our expectation so that it seemed quite possible that there had been

errors or omissions in the determination, we decided to continue. It turns out

that these 80 are indeed complete and that Cole's computations were either cor-

rect or at any rate did not contain any errors which led to the omission of a

valid system. In any case these results testify to Cole's reputation for brilliant

computation.

2. The computation—General considerations. There are two stages in the

calculation, the formation of the systems and the reduction of isomorphisms.

That these must be carried out simultaneously is seen from the fact that if all

systems on 15 marks which arise from the 80 distinct systems are counted, the

total exceeds 6.1013 (actually (14521/315)15!).


