Uniqueness of the projective plane of order eight
HTML articles powered by AMS MathViewer
- by Marshall Hall, J. Dean Swift and Robert J. Walker PDF
- Math. Comp. 10 (1956), 186-194 Request permission
References
- R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canad. J. Math. 1 (1949), 88–93. MR 27520, DOI 10.4153/cjm-1949-009-2
- Marshall Hall Jr., Correction to “Uniqueness of the projective plane with $57$ points.”, Proc. Amer. Math. Soc. 5 (1954), 994–997. MR 65179, DOI 10.1090/S0002-9939-1954-0065179-4
- D. R. Hughes, Additive and multiplicative loops of planar ternary rings, Proc. Amer. Math. Soc. 6 (1955), 973–980. MR 73568, DOI 10.1090/S0002-9939-1955-0073568-8
- H. W. Norton, The 7 x 7 squares, Ann. Eugenics 9 (1939), 269–307. MR 1220, DOI 10.1111/j.1469-1809.1939.tb02214.x
- William A. Pierce, The impossibility of Fano’s configuration in a projective plane with eight points per line, Proc. Amer. Math. Soc. 4 (1953), 908–912. MR 58985, DOI 10.1090/S0002-9939-1953-0058985-2
- Albert Sade, An omission in Norton’s list of $7\times 7$ squares, Ann. Math. Statistics 22 (1951), 306–307. MR 40254, DOI 10.1214/aoms/1177729654 G. Tarry, “Le problème des 36 officiers,” Compte Rendu de l’Association Française pour l’Avancement de Science Naturel,” v. 1, 1900, p. 122-123; v. 2, 1901, p. 170-203.
- Oswald Veblen and W. H. Bussey, Finite projective geometries, Trans. Amer. Math. Soc. 7 (1906), no. 2, 241–259. MR 1500747, DOI 10.1090/S0002-9947-1906-1500747-6
- O. Veblen and J. H. Maclagan-Wedderburn, Non-Desarguesian and non-Pascalian geometries, Trans. Amer. Math. Soc. 8 (1907), no. 3, 379–388. MR 1500792, DOI 10.1090/S0002-9947-1907-1500792-1
Additional Information
- © Copyright 1956 American Mathematical Society
- Journal: Math. Comp. 10 (1956), 186-194
- MSC: Primary 50.0X
- DOI: https://doi.org/10.1090/S0025-5718-1956-0084142-0
- MathSciNet review: 0084142