Numerical evaluation of multiple integrals. I
Authors:
Preston C. Hammer and A. Wayne Wymore
Journal:
Math. Comp. 11 (1957), 59-67
MSC:
Primary 65.3X
DOI:
https://doi.org/10.1090/S0025-5718-1957-0087220-6
MathSciNet review:
0087220
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] J. Clerk-Maxwell, ``On approximate multiple integration between limits of summation,'' Cambridge Phil. Soc., Proc., v. 3, 1877, p. 39-17.
- [2] G. W. Tyler, Numerical integration of functions of several variables, Canad. J. Math. 5 (1953), 393–412. MR 56379, https://doi.org/10.4153/cjm-1953-044-1
- [3] P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, https://doi.org/10.1090/S0025-5718-1956-0086389-6
- [4] Preston C. Hammer and Arthur H. Stroud, Numerical integration over simplexes, Math. Tables Aids Comput. 10 (1956), 137–139. MR 86390, https://doi.org/10.1090/S0025-5718-1956-0086390-2
- [5] W. H. Peirce, ``Numerical integration over planar regions,'' Ph.D. Thesis, University of Wisconsin, 1956, available on microfilm.
- [6] P. Davis and P. Rabinowitz, Some Monte Carlo experiments in computing multiple integrals, Math. Tables Aids Comput. 10 (1956), 1–8. MR 76451, https://doi.org/10.1090/S0025-5718-1956-0076451-6
Retrieve articles in Mathematics of Computation with MSC: 65.3X
Retrieve articles in all journals with MSC: 65.3X
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1957-0087220-6
Article copyright:
© Copyright 1957
American Mathematical Society