Numerical integration over the spherical shell
HTML articles powered by AMS MathViewer
- by William H. Peirce PDF
- Math. Comp. 11 (1957), 244-249 Request permission
References
-
P. Appell, “Sur une classe de polynômes à deux variables et le calcul approché des intégrales doubles,” Annales de la Faculté des Sciences de Toulouse, v. 4, 1890, p. H.1-H.20.
- Carlo Birindelli, Su nuove formule interpolatorie del Picone per funzioni in più variabili e loro contributo al calcolo numerico degli integrali multipli, Compositio Math. 10 (1952), (1952) (Italian). MR 52478 W. Burnside, “An approximate quadrature formula,” Messenger of Math., v. 37, 1908, p. 166-167. C. F. Gauss, “Methodus nova integralium valores per approximationem inveniendi,” Werke, Göttingen, v. 3, 1866, p. 163-196.
- P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, DOI 10.1090/S0025-5718-1956-0086389-6
- Preston C. Hammer and Arthur H. Stroud, Numerical integration over simplexes, Math. Tables Aids Comput. 10 (1956), 137–139. MR 86390, DOI 10.1090/S0025-5718-1956-0086390-2
- Preston C. Hammer and A. Wayne Wymore, Numerical evaluation of multiple integrals. I, Math. Tables Aids Comput. 11 (1957), 59–67. MR 87220, DOI 10.1090/S0025-5718-1957-0087220-6 J. C. Maxwell, “On approximate multiple integration between limits by summation,” Camb. Phil. Soc., Proc., v. 3, 1877, p. 39-47.
- Mauro Picone, Vedute generali sull’interpolazione e qualche loro conseguenza, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 5 (1951), 193–244 (Italian). MR 49250
- Michael Sadowsky, A formula for approxiamte computation of a triple integral, Amer. Math. Monthly 47 (1940), 539–543. MR 2496, DOI 10.2307/2303834 G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publication, v. 23, New York, 1939.
- G. W. Tyler, Numerical integration of functions of several variables, Canad. J. Math. 5 (1953), 393–412. MR 56379, DOI 10.4153/cjm-1953-044-1
- Richard von Mises, Numerische Berechnung mehrdimensionaler Integrale, Z. Angew. Math. Mech. 34 (1954), 201–210 (German, with English, French and Russian summaries). MR 63777, DOI 10.1002/zamm.19540340602
Additional Information
- © Copyright 1957 American Mathematical Society
- Journal: Math. Comp. 11 (1957), 244-249
- MSC: Primary 65.00
- DOI: https://doi.org/10.1090/S0025-5718-1957-0093910-1
- MathSciNet review: 0093910