An inverse method for the generation of random normal deviates on largescale computers
HTML articles powered by AMS MathViewer
 by Mervin E. Muller PDF
 Math. Comp. 12 (1958), 167174 Request permission
References

G. E. P. Box & M. E. Muller, “A note on the generation of normal deviates,” Ann. Math. Stat., to be published.
George E. Forsythe, “Generation and testing of random digits at the National Bureau of Standards, Los Angeles,” Monte Carlo Method, NBS, Applied Mathematics Series 12, U. S. Government Printing Office, Washington, D. C., 1951, p. 3435. [MTAC, Rev. 42, v. XI, 1957, p. 4344.]
 Joseph O. Harrison Jr., Piecewise polynomial approximation for largescale digital calculators, Math. Tables Aids Comput. 3 (1949), 400–407. MR 32202, DOI 10.1090/S00255718194900322029
 F. B. Hildebrand, Introduction to numerical analysis, McGrawHill Book Co., Inc., New YorkTorontoLondon, 1956. MR 0075670
 D. L. Johnson, Generating and testing pseudo random numbers on the IBM Type 701, Math. Tables Aids Comput. 10 (1956), 8–13. MR 76467, DOI 10.1090/S0025571819560076467X
 M. L. Juncosa, Random number generation on the BRL highspeed computing machines, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 1953. Rep. No. 855,. MR 0059617 Herman Kahn, “Applications of Monte Carlo,” RAND Project Report, 1954, Revised 1956, RAND Project Report RM1237AEC. C. Lanczos, “Trigonometric interpolation of empirical and analytical functions,” Jn. Math. Phys., v. 17, 1938, p. 123199.
 Cornelius Lanczos, Chebyshev polynomials in the solution of largescale linear systems, Proceedings of the Association for Computing Machinery, Toronto, 1952, Sauls Lithograph Co. (for the Association for Computing Machinery), Washington, D.C., 1953, pp. 124–133. MR 0067580
 D. H. Lehmer, Mathematical methods in largescale computing units, Proceedings of a Second Symposium on LargeScale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, pp. 141–146. MR 0044899 D. H. Lehmer, Description of “Random number generation of the BRL highspeed computing machines,” Mathematical Reviews, v. 15, 1954, p. 559. NBS, Applied Mathematics Series 12, Monte Carlo Methods, 1951, p. 3435.
 Jack Moshman, The generation of pseudorandom numbers on a decimal calculator, J. Assoc. Comput. Mach. 1 (1954), 88–91. MR 61882, DOI 10.1145/320772.320775
 Mervin E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist. 27 (1956), 569–589. MR 88786, DOI 10.1214/aoms/1177728169 M. E. Muller, “A comparison of methods for generating normal deviates,” Technical Report No. 9, Statistical Techniques Research Group, Department of Mathematics, Princeton University, to be published. N. E. Norlund, Vorlesungen Uber Differenzenrechnung, Springer, Berlin, 1924. Herbert A. Meyer, Editor, Symposium on Monte Corlo Methods, held at the University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956. [MTAC, Rev. 43, v. XI, 1957, p. 4446.] The Rand Corporation, One Million Random Digits and 100,000 Normal Deviates, The Free Press, Glencoe, Illinois, 1955. [MTAC, Rev. 11, v. X, 1956, p. 3943.] NBS, Applied Mathematics Series 23, Tables of Normal Probability Functions, U. S. Government Printing Office, Washington, D. C., 1953.
 Olga Taussky and John Todd, Generation and testing of pseudorandom numbers, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1956, pp. 15–28. MR 0080382 D. Teichroew, Distribution Sampling with HighSpeed Computers, Ph.D. Thesis, University of North Carolina, 1953.
 D. F. Votaw Jr. and J. A. Rafferty, High speed sampling, Math. Tables Aids Comput. 5 (1951), 1–8. MR 39181, DOI 10.1090/S00255718195100391818
 Herman Wold, Random Normal Deviates. 25,000 Items Compiled from Tract No. XXIV (M. G. Kendall and B. Babington Smith’s Tables of Random Sampling Numbers), Cambridge University Press, 1948. MR 0029132
Additional Information
 © Copyright 1958 American Mathematical Society
 Journal: Math. Comp. 12 (1958), 167174
 MSC: Primary 65.00; Secondary 68.00
 DOI: https://doi.org/10.1090/S00255718195801029051
 MathSciNet review: 0102905